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Abstract. There is rising interest in integrating signal and image processing pipelines into deep 

learning training to incorporate more domain knowledge. This can lead to deep neural networks 

that are trained more robustly and with limited data, as well as the capability to solve ill-posed 

inverse problems. In particular, there is rising interest in differentiable rendering, which allows 

explicitly modeling geometric priors and constraints in the optimization pipeline using first-order 

methods such as backpropagation. Existing efforts in differentiable rendering have focused on 

imagery from electro-optical sensors, particularly conventional RGB-imagery. In this work, we 

propose an approach for differentiable rendering of Synthetic Aperture Radar (SAR) imagery, 

which combines methods from 3D computer graphics with neural rendering. We demonstrate the 

approach on the inverse graphics problem of 3D Object Reconstruction from limited SAR imagery 

using high-fidelity simulated SAR data. 

 

1. Introduction 
 

This work presents a proof-of-concept for differentiable rendering in synthetic aperture radar 

(SAR) imagery. SAR is an imaging modality based on pulse-doppler radar. As a radar antenna 

moves, successive pulses of radio waves are transmitted to illuminate a scene. Echoed pulses from 

multiple antenna positions can be combined, which forms the synthetic aperture that enables higher 

resolution images than would otherwise be possible for a physical antenna [1]. In aerial and 

automotive vehicles, the vehicle’s natural motion provides the movement needed to form the 

synthetic aperture. 

Motivations for differentiable rendering for SAR are similar to those for electro-optical (EO) 

imagery. The survey in [2] describes many applications of differentiable rendering in EO imagery. 

While the most common application is for 3D object reconstruction, differentiable rendering is 

useful for any first-order optimization problem that may benefit from pixel-level supervisions 

flowing to 3D properties, including for training deep neural networks. While there have been 

successful demonstrations of methods for differentiable rendering of EO-domain imagery in recent 

years, these methods are not directly applicable to SAR-domain imagery, as SAR and EO images 

exhibit significantly different geometry and phenomenology. 

Since SAR is a coherent imaging method and a form of active sensing, many priors about a 

scene are inherently known and controlled. Specifically, detailed knowledge about the scene’s 

illumination as well as positions of the sensor and illuminator relative to the area on the ground 

being imaged are always known. In addition to control over illumination and prior positional 

knowledge that can be expected, SAR imagery is invariant to many uncontrollable environmental 

effects that mar EO-domain imagery. This includes weather and atmospheric effects such as cloud 

cover, as well as illumination changes due to day/night cycles. Collectively, these differences mean 

that SAR-domain images have few scene parameters that are uncontrollable or unknown to the 

user, and thus are especially well-suited for differentiable rendering. 
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Therefore, this work presents a proof-of-concept and starting point for differentiable rendering 

in SAR imagery. Our proposed approach is composed of a “Feature Rasterizer” followed by a 

“Neural Shader,” depicted in the block diagram of Figure 1. The Feature Rasterizer produces 

image-like features that convey context about the structure and illumination of the scene. These 

features act as the input condition to the Neural Shader, which is implemented as a conditional 

generative adversarial network (CGAN). The Neural Shader enhances the scene with realistic SAR 

scattering effects to complete the rendering process. We focus on the application of 3D object 

reconstruction for demonstration since it is a common and highly useful downstream task enabled 

by differentiable rendering. Consequently, differentiation is with respect to an object’s mesh 

vertices. 

 

 
Figure 1: Block diagram of proposed composite differentiable rendering approach. 

 

 

Our contributions are the following:  

1. We develop a differentiable rendering pipeline for SAR imagery, composed of a Feature 

Rasterizer and Neural Shader. The former uses softened rasterization to project mesh-based 

scene representations into 2D feature maps tailored to SAR’s imaging geometry, while the later 

uses a CGAN to predict SAR scattering effects from the feature maps. 

2. We show how to train the CGAN for shading, using simulated SAR data. 

3. We demonstrate proof-of-principle use for solving the inverse graphics problem of 3D object 

reconstruction. 

 

2. Related Work 
 

2.1 SAR Simulators 

 

The survey of SAR simulators in [3] distinguishes two main categories of SAR simulation systems:  

a) SAR image simulators, which directly produce focused SAR images. 

b) SAR raw signal simulators, which simulate raw sensor measurements. 

 

Category (a) simulators include examples such as RaySAR [4], CohRaS® [5], and SARviz [6]. A 

comparison of these and assessment of their limitations is provided in [7]. Of these, SARviz is the 

only simulator that uses rasterization, while the others involve a form of ray tracing. RaySAR is 
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the only project that is open source, but also has the most limited shading effects, relying on Phong 

shading [8]. 

Simulators of category (b) are usually based on physical optics approximations [9] and 

enhanced further with the shooting and bouncing rays (SBR) method pioneered in [10]. Instead of 

producing images directly, these physics-based simulators simulate raw sensor measurements, 

which the user must process themselves to coherently form images. These methods are the most 

realistic, but also computationally intensive. Examples in this category include Xpatch [11], 

CASpatch [12], FACETS [13], SigmaHat [14], FEKO [15], and POFACETS [16]. Most simulators 

in this category are closed-source commercial products and do not explicitly support differentiable 

optimization. Of these, POFACETS is the only project that is open source, but lacks some 

advanced features such as SBR. 

Our proposed differentiable rendering approach would be categorized as a SAR image 

simulator, though the data used to evaluate it was produced by a SAR raw signal simulator. 

Importantly, the simulators above are not suitable for solving inverse problems as they are not 

easily differentiable, and are therefore limited to black-box optimization. 

 

2.2 Neural and Differentiable Rendering 

 

Neural rendering is an umbrella term referring to a broad field of methods that fuse machine 

learning models with techniques or domain-knowledge from computer-graphics. A beneficial 

property of techniques in this family is that they are inherently differentiable; since they are 

composed of neural network building blocks, the resulting models can be easily backpropagated 

through. While they have been successful, it is worth noting that most neural rendering methods 

aim to manipulate existing images, rather than create images from raw scene representations [17]. 

Such techniques are thus more akin to sophisticated pixel shaders, and not renderers in the literal 

sense. The survey in [18] describes these collectively as “2D Neural Rendering” methods, and 

distinguishes them from an emerging paradigm it calls “3D Neural Rendering.”  

Methods of this new paradigm, such as [19], learn to represent a scene in 3D, using a 

differentiable rendering algorithm to facilitate training a neural network to represent the scene. 

Methods of this branch of “neural rendering” are consequently best described as neural scene 

representations, and are yet another application of differentiable rendering. Cases such as [19] use 

volume rendering techniques, which are naturally differentiable and also memory inefficient. 

Besides volumetric techniques, most differentiable rendering work in the literature has 

focused on rasterization-based methods from computer graphics [2]. Rasterization is 

computationally-efficient, but not naturally differentiable. However, smoothed variants have 

emerged [20-22], which have made rasterization-based methods viable. Physics-based 

differentiable rendering methods which model global light transport effects exist as well [23,24], 

but are substantially slower. These methods are the most accurate, but the hypothetical 

improvements in rendering accuracy may not be worth the increased computational cost.  

Use of neural and differentiable rendering methods in the context of SAR has so far been 

limited. A number of papers have proposed utilizing CGANs for image-to-image translation from 

SAR to EO imagery [25-27]. However, perhaps the most related example is [28], which attempts 

to improve the realism of the RaySAR SAR image simulator [4] by training a deep neural network 
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to estimate realistic SAR scattering effects. This falls under the “2D Neural Rendering” paradigm 

and is similar in principal to our use of a CGAN for the Neural Shader. 

 

3. Data 
 

3.1. Object Shapes 

 

Computer-aided design models for a total of seven object shapes were created, pictured in Figure 2. 

The objects were created in Blender [29] and exported as triangulated meshes. The ground plane 

gridded lines are spaced in units of one meter, making these objects similar in size to medium or 

large vehicles. 

 

 
Figure 2: Meshes of the seven objects used to generate train, validation, and test SAR images. 

 

The first five objects are used to generate training data for the Neural Shader. The Long 

Cuboid is used as a validation object to inform hyperparameter tuning for both the Feature 

Rasterizer and Neural Shader. The Elliptic Cone is reserved as a test-only object and used only 

after all aspects of the end-to-end rendering process were frozen. 

 

3.2 Aspect Angles 

 

The data generated for this study consist of six distinct 

elevation angles, evenly spaced between [10, 60], 

and 36 distinct azimuth angles, evenly spaced between 

[0, 350]. This gives a total of 216 distinct aspect-

angle combinations per object. A geometric 

representation of the aspect angles is illustrated in 

Figure 3. Data are assumed to be monostatic, meaning 

transmitter and receiver are co-located, which is the 

most common scenario for SAR.  

 

3.3 Coherent Augmentation via Polarization 

 

The transmitting and receiving antennas can each be configured at either horizontal (H) or vertical 

(V) polarizations. Simulations are done for all linear polarization combinations for transmitter and 

receiver (VV, VH, HV, HH). Although images are ordinarily only formed using co-pol 

measurements (𝑆𝑉𝑉, 𝑆𝐻𝐻), the cross-pol measurements (𝑆𝑉𝐻, 𝑆𝐻𝑉) can be used as physically 

meaningful data augmentation to coherently augment the co-pol measurements for additional data 

diversity as: 

Figure 3: Collection geometry for aspect 

angles θ (azimuth) and φ (elevation). 
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 𝑆̃𝑉𝑉 = 𝑆𝑉𝑉 +  𝛾 ∙ 𝑆𝐻𝑉 

𝑆̃𝐻𝐻 = 𝑆𝐻𝐻 + 𝛾 ∙ 𝑆𝑉𝐻 . 

(1) 

(2) 

 

Realizable scenarios would be transmitting on one or both pols, corresponding to 𝛾 ∈ {0, 1}, 
respectively. However, any 𝛾 ∈ [0, 1] is reasonable for data augmentation purposes. As cross-pol 

measurements degrade coherency of the formed images, we chose 𝛾 ∈ {0, 0.4} as a compromise to 

balance the benefits of increasing sample diversity with preserving image quality. This results in 

four example SAR images for every combination of aspect angles. 

 

3.4 Simulation Details 

 

Every object is assumed to be made of perfect electric conducting material. This simplifies the 

simulations and is a reasonable assumption for most metallic objects, though it is straightforward 

to simulate other materials at modest increase in data generation time. The texture of the surfaces 

of each object are assumed to be slightly rough (up to a few centimeters of surface variability). 

Each simulation uses nominally 256 pulses at X-band frequencies, spanning 11 of synthetic 

aperture and having 2GHz of total bandwidth. The resulting SAR collections have a very fine 

spatial resolution of 0.075m in both range and cross-range directions. 

 

3.5 SAR Image Formation and Processing 

 

The raw Fourier data (known as “phase history” in the SAR community) acquired from the 

simulations are first Taylor-weighted as described in [30]. Adding such a taper to the data is used 

primarily to decrease the prevalence of sidelobes in the formed images. Next, images are formed 

via Backprojection, based on [31]. This implementation also projects the SAR images into the 

ground-plane. The complex-valued images are remapped via the Piecewise Extended Density 

Format, as implemented in the SarPy library [32]. Figure 4 shows examples of resulting images 

after this remapping. 

 

 
Figure 4: Example SAR images after full processing. 

 

4. SAR Feature Rasterizer 
 

In this section we describe the SAR Feature Rasterizer, which projects mesh-based scene 

representations into 2D feature maps that convey context about the structure and illumination of 

the scene. The Feature Rasterizer consists of three stages: Coordinate Transformations, 

Rasterization, and Shading. Standard computer graphics rendering follows analogous stages; 

however, each stage requires alterations either to accommodate backpropagation, account for 
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SAR’s unique imaging geometry, or for the features we want to produce for the Neural Shader. 

The implementation of this Feature Rasterizer extends and is based on the PyTorch3D API [33]. 

 

4.1 SAR Imaging Geometry and Coordinate Transformations 

 

SAR’s unique imaging geometry makes adapting methods in differentiable rendering designed for 

EO imagery non-trivial. For rasterization-based methods, imaging geometry is controlled 

primarily through the coordinate transformation sequence. Consequently, understanding the 

geometry differences between these imaging modalities is necessary to design a coordinate 

transformation sequence. 

In EO imagery, distance from the sensor affects an object’s perceived size. This results in the 

“oblique aerial” imaging geometry, seen in Figure 6. In computer graphics, this effect is known as 

“perspective,” and is typically accounted for via a “perspective projection” during the conversion 

to Normalize Device Coordinates (NDC) [34]. However in SAR imagery, distance from the sensor 

determines which range-bin reflected energy funnels into, and thus affects an object’s perceived 

position in range. 

This leads to a natural “slant-plane” imaging geometry for points on the ground. SAR images 

may be projected into the “ground-plane” as part of image formation, nominally mapping image 

pixels to equally spaced points along the ground. Distance to the sensor is also influenced by an 

object’s height. Consequently, imaging objects of variable height will yield sampling distortions 

known as “foreshortening” and “layover” [30, 35]. 

 

 

 

The goal of the coordinate transformation stage is to transform mesh coordinates appropriately 

to get the desired SAR ground-plane imaging geometry, including foreshortening/layover effects. 

Coordinate Transformation sequences must start in world space coordinates and end in NDC. The 

primary sequence is described in Table 1 and illustrated in Figure 7. If the ground-plane projection 

were to be omitted, the result would be a SAR slant-plane imaging geometry instead. An equivalent 

EO “oblique aerial” imaging geometry would require omitting both the range transform and 

ground-plane projection, as well as changing the orthographic projection to a perspective 

projection. 

 

Figure 6: Graphic representation 

of foreshortening phenomenon. 

Figure 5: Comparison of imaging geometries in EO and SAR 

when imaging points on the ground. 
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Transform 

Name 

Input  

Coordinates  

Output 

Coordinates  
Description 

View  

Transform 
World Space View Space Coordinates relative to camera’s point of view 

Range 

Transform 
View Space Range Space 

z-coordinates (depth, or distance from camera) 

become new y-coordinates 

Ground-plane 

Projection 
Range Space Ground Space 

Stretches perceived y-dimension s.t. each pixel 

maps to consistent-sized cell on ground 

Orthographic 

Projection 
Ground Space NDC Space 

Without perspective projection (distance from 

camera does not affect perceived size) 

Table 1: Coordinate transformation details for SAR ground-plane imaging geometry. 

 
Figure 7: Coordinate transform sequence for SAR ground-plane imaging geometry. 

 

4.2 Rasterizing and Shading Feature Maps 

 

Soft Rasterization. The rasterization method is based on the 

“soft rasterizer” of [22]. The method in [22] blends facet 

contributions for pixels near edges to mitigate the 

discontinuities that would arise if trying to backpropagate 

through a standard rasterization operator. Soft rasterization 

will yield slightly distorted images but allows 

backpropagating more useful gradients. Examples of artifacts 

from soft rasterization are shown in Figure [8]. 

 

Silhouette and Surface Normal Features. Rasterizing with 

our custom coordinate transform sequence produces the 

fragments necessary to shade the first two feature maps. The first feature map is a basic silhouette 

of the object. This can be produced by making a mask out of fragments that have no corresponding 

facets. The second feature we want is pixel-wise surface-normal information, relative to the 

direction of the sensor and illumination. For monostatic imagery, this is given as: 

 

 𝑑 = −𝑞̂ ∙ 𝑛̂ , (3) 

 

where 𝑞̂ is the direction of the illumination, 𝑛̂ is the per-pixel surface-normal of the object, and ∙ 
denotes the inner-product. 

 

Figure 8: Visual artifacts from 

soft rasterization using varying 

levels of blending radius σ. 
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Alpha Feature with SAR Self-Shadow. The last feature map to shade is an alpha channel. 

Deriving the alpha channel is complicated by SAR’s self-shadowing effect. To address this, we 

create a shadow mask. The shadow mask can be predicted by rasterizing two reference views. In 

both views the camera is facing top-down. The first view involves no additional projections, while 

the second view includes a foreshortening projection. Both reference views are illustrated in 

Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting rasterization fragments can be used to derive a per-pixel height map of the object 

for both views. Pixels where height decreased following the foreshortening projection constitute 

the shadow mask. We make the shadow soft instead of hard so that it produces more useful 

gradients during backpropagation. The shadow mask is computed as:  

 

 𝑀𝑠ℎ𝑎𝑑𝑜𝑤 = 𝑡𝑎𝑛ℎ(𝛽 ⋅ (𝑍𝑓 − 𝑍𝑟)) , (4) 

 

where 𝑍𝑟 and 𝑍𝑓 are depth buffers of the reference views with and without foreshortening, 

respectively. Scaling parameter 𝛽 controls shadow sharpness and has a default value of 6.0. Since 

𝑍𝑓 ≥ 𝑍𝑟, pixel values of 𝑀𝑠ℎ𝑎𝑑𝑜𝑤 will be between [0,1). Finally, the shadow can be added to the 

standard alpha channel 𝛼 by: 

 

 𝛼∗ = 𝛼 ⊙ (1 − 𝑀𝑠ℎ𝑎𝑑𝑜𝑤) . (5) 

 

An example of all three shaded feature maps is shown in Figure 10. 

 

5. Neural Shader 
 

The Neural Shader is trained to predict realistic SAR shading/scattering effects conditioned on the 

features output by the Feature Rasterizer. Given this is effectively a paired image-to-image 

translation problem, we choose a model based on Pix2Pix [36]. While some newer approaches 

have outperformed Pix2Pix, we choose it for its simplicity in this proof of principle work. The 

most noteworthy deviation made is to use batch renormalization [37] instead of instance 

Figure 10: SAR shadow estimation reference views. 

 

Figure 9: Shaded feature maps. 
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normalization. Batch renormalization addresses the original issues that motivated the authors to 

use instance normalization, while improving consistency and accuracy. 

 

5.1 Training 

 

The feature map inputs used in training involve minor data augmentation via differing values for 

blending radius 𝝈 (0, 1e-5, 1e-4, 1e-3), like those seen in Figure 8. This adds diversity to the 

training data and should help the CGAN be more robust to distortions caused by soft rasterization. 

As described in subsection 3.3, the SAR images are augmented via differing polarization 

combinations.  

The CGAN is trained for a total of 225 epochs, each of which is 1080 iterations, with a batch 

size of one. Both the generator and discriminator are trained with the Adam optimizer [38]. 

Learning rates start at 2e-4 and decay linearly every epoch to reach 2e-5 by the end of training. 

 

5.2 Results 

 

Figure 11 shows example images generated by the fully trained CGAN. Although the most 

important results are those for the test object, we include predictions from objects in the validation 

and training sets for additional comparison. 

 

 
Figure 11: Example images generated by the fully trained CGAN. 

 

The train, validation and test object sets are compared in terms of the loss produced when 

generating images of each with the CGAN, in Table 2. The 𝐿𝑐𝐺𝐴𝑁 and 𝐿𝐿1 losses in Table 2 are 

the same as those found in [36], with the same recommended weighting of 1 and 100, respectively. 

𝐿𝑐𝐺𝐴𝑁 is a measure of how well the generator fools the discriminator, while 𝐿𝐿1 is the scaled L1 

distance between predicted and truth images. 

We also include an energy-normalized metric, 𝐿𝐿2
∗ , to account for bias due to varying object 

sizes. The sum-squared-error of the residual is normalized by the energy of the label image, and 

this ratio is converted to a dB scale. The metric is defined in equation 6, where norms are over 

pixels. 
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𝐿𝐿2

∗ = 10 log10 (
‖𝑦 − 𝑦̂‖2

‖𝑦‖2
) . (6) 

 

When using the energy-normalized metric 

𝐿𝐿2
∗ , we can see that loss is lowest on the 

training set as expected, with an increase of 

+3.87 dB loss on the validation set, and an 

additional +0.64 dB loss on the test set. This is 

the pattern of losses we would expect, which 

suggests the CGAN suffers a modest amount of 

over-fitting to the training data and a minor 

amount of over-tuning to the validation data. 

 

6. 3D Reconstruction Experiment 
 

The goal of this demonstration is to test if the proposed differentiable renderer can be used to 

reconstruct a mesh of a new object, given only SAR images of the object at various known 

aspect angles. 

 

6.1 Losses 

 

This subsection details losses used for the 3D reconstruction experiments. The total loss is 

aggregated from five sources, with weights that were tuned based on reconstruction performance 

using the validation object, and is given as: 

 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑝 + 1.5𝐿𝑙 + 0.02𝐿𝑛 + 0.03𝐿𝑒 + 0.4𝐿𝑓 . (7) 

 

The first term uses pixel-wise mean-squared-error to compare the high-fidelity simulated SAR 

images (at known aspect angles) to output predictions of the differentiable SAR renderer (at the 

same aspect angles). Despite the notorious fickleness of SAR speckles, we found this loss still 

works reasonably well for demonstration purposes and is simple. The other loss terms are 

described next. 

 

Laplacian. We use the “uniform” weighting of Laplacian mesh regularization based on [39] and 

[40], which discourages sharp vertex corners. If 𝑦𝑖 represents the 𝑖th vertex of the mesh, 𝑆𝑖 is the 

set of vertices it shares edges with, and 𝔼[𝑆𝑖] is its centroid, then the Laplacian regularization loss 

can be computed as: 

 

 𝐿𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 = ∑‖𝔼[𝑆𝑖] − 𝑣𝑖‖

𝑖

 . (8) 

 

Normal Consistency. We use normal consistency mesh regularization as implemented in [33], 

which encourages adjacent faces to have similar surface-normal directions. If 𝑛̂𝑎𝑘
 and 𝑛̂𝑎𝑘

 are 

Data Set 𝑳𝒄𝑮𝑨𝑵 𝑳𝑳𝟏 𝑳𝒕𝒐𝒕𝒂𝒍 𝑳𝑳𝟐
∗  

Train 0.64 1.74 2.38 -10.86 

Validation 0.60 2.90 3.50 -6.99 

Test 0.61 1.52 2.13 -6.35 

Table 2: Average loss comparison by object 

set for trained CGAN. 
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surface normal vectors of faces sharing the 𝑘th edge, then the normal consistency regularization 

loss is given as: 

 

 𝐿𝑛𝑜𝑟𝑚𝑎𝑙 = ∑ 1 − 𝑛̂𝑎𝑘
⋅ 𝑛̂𝑏𝑘

𝑘

 . (9) 

 

Edge Length. Edge length regularization is meant to encourage mesh edges to be of similar length. 

This has the effect of encouraging vertices to be uniformly distributed along the mesh’s surface.  

If 𝛾 is the set of the mesh’s edge lengths, the edge length regularization loss can be written as: 

 

 𝐿𝑒𝑑𝑔𝑒 = ∑(𝔼[𝛾] − 𝛾𝑘)2

𝑘

 . (10) 

 

Floor-Plane. Since only overhead views are realizable, 

vertices on the underside of the mesh will not receive 

guiding gradient information from the Primary loss. 

However, it is known as a prior that such vertices are 

likely to reside on the scene’s floor plane, as opposed to 

being suspended in air. 

We created the ‘floor-plane’ regularizer to encourage 

this by first rasterizing the object from a bottom-up view. 

The depth buffer 𝑍 from the raster fragments can be used 

to derive a 2D height map 𝐻 of the underside of the 

mesh. We penalize the heights as: 

 

 𝐻 = 𝑟 − 𝑍 

𝐿𝑓𝑙𝑜𝑜𝑟 = 𝔼[𝐻2] , 
(11) 

(12) 

 

where 𝑟 is the distance between the camera and the scene’s floor-plane. It is assumed that the floor-

plane has a height of zero. Figure 12 provides a geometric interpretation of the quantities in 

equation 11. 

 

6.2 Mesh Optimization Loop and Settings 

 

The 3D object reconstruction is done in two levels, to reconstruct the mesh in a coarse-to-fine 

manner. Both levels use the stochastic gradient descent optimizer with a learning rate of 1.0, 

momentum of 0.9, and dampening of 0.9. Each level updates the mesh iteratively as follows: 

1. A label SAR image of the target object and its aspect angles are chosen. 

2. The estimated mesh is rendered via our renderer at the same aspect angles.  

3. The total (regularized) loss is computed by equation 7, using the prediction rendered by the 

model and the chosen label SAR image. 

4. The mesh is updated based on backpropagated gradients from the loss. 

 

Figure 12: Geometric representation 

of floor-plane regularization. 
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During the first level of mesh-fitting, the estimated mesh is initialized with a large dome shape 

of 42 vertices and 80 triangle faces, as seen in Figure 13. We choose a low vertex count to help 

the optimization loop avoid local minima early on. The soft rasterizer blurring coefficient is 

𝜎=1e-3. The mesh at this level is updated for 1080 iterations using a batch size of two. 

After the first level of mesh-fitting, the mesh estimate is 

up-sampled by inserting new vertices in the middle of each 

edge, resulting in a mesh with 162 vertices and 320 triangle 

faces. This up-sampled mesh initializes the second level. The 

soft rasterizer blurring coefficient is also lowered to 𝜎=2.5e-4. 

The mesh is updated for 540 iterations using a batch size of 

four. The larger batch size of the second level reduces 

variance of the gradients, helping the mesh fine-tune. 

 

6.3 Results 

 

The experiment is performed on three objects: Large Ramp, Long Cuboid, and Elliptic Cone. The 

primary object of interest to test is the Elliptic Cone because it was reserved exclusively for testing. 

Results on the Long Cuboid (validation object) and Large Ramp (training object) serve as points 

of reference to understand how much the mesh-fitting performance may be impacted by 

hyperparameter over-tuning and Neural Shader overfitting, respectively. The experiment is run 

five times for each object at different random seeds. The results for each object shown in Figure 14 

are sourced from the median-scoring trial. 

 

 
Figure 14: Meshes from median-scoring trial of 3D reconstruction for Large Ramp (train), Long 

Cuboid (validation), and Elliptic Cone (test). 

 

For quantitative evaluation, we use voxelized intersection over union (IoU), which is a 

common metric for 3D reconstruction tasks [22]. The IoU scores of the three objects trend similarly 

to what was observed with the 𝐿𝐿2
∗  metric that compared rendering accuracy in Table 2. It is worth 

noting that the 𝐿𝐿2
∗  score for the Large Ramp by itself was -12.32 dB, which is better than the 

average amongst all training objects (-10.86 dB). Similar to in the analysis of subsection 5.2, the 

results suggest the Neural Shader suffers a modest amount of over-fitting to training data and a 

minor amount of over-tuning to validation data. 

 

Figure 13: Initial dome mesh. 
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7. Future Work and Conclusion 
 

The method proposed in this work has been successful as a proof of principle. However, there are 

areas for improvement that should be addressed in the future to help this become a more pragmatic 

tool for real-world use. This includes support for multiple materials and object segments, support 

for multistatic modalities, and validation on real world data. There are also open research problems 

related to differentiable rendering for SAR that should be the subject of future work. These include 

additional applications and an alternative approach based on SAR raw signal simulators. 

 

Future Improvements. In the method’s current form, objects are assumed to be of a uniform 

material, and changing the assumed material requires new corresponding weights for the Neural 

Shader. Support for multiple material types, as well as backpropagation to material properties, 

would broaden the tool’s utility to other differentiable SAR rendering applications. This could 

manifest itself as additional feature maps output by the Feature Rasterizer to convey material 

property context to the Neural Shader. The current method also only supports one object segment 

(i.e., one mesh) at a time. Support for multiple segments would allow handling of background 

clutter, which is typically present in real SAR images, and may make support for multiple materials 

easier to implement. 

This work also only considered monostatic SAR collections. Generalizing the approach to 

accommodate multistatic SAR modalities (where transmitter and receiver are not co-located) 

would expand the coverage of SAR collection modes. 

Lastly, the SAR data used to train and evaluate our method was synthetically generated. The 

cost of collecting large quantities of measured data make it prohibitively expensive to use for 

training. However, future experiments should at least use measured data for validation and test 

objects. 

 

Future Directions. We chose the task of 3D object reconstruction for demonstration purposes, but 

future work should investigate other applications enabled by differentiable rendering. Particularly, 

we would like to see this applied to the task of generating adversarial examples subject to 3D shape 

or material constraints. This task may be useful on its own for assisting in vehicle design or 

augmentation, but also enables the downstream tasks of geometrically-constrained data 

augmentation and adversarial training for deep neural networks. 

An approach based on SAR raw signal simulation would be fully coherent and would allow 

the user to employ an image formation algorithm of choice. It would also eliminate the need to 

train a CGAN for shading, which is cumbersome because of the large number of high-fidelity SAR 

images needed to train it. However, such an approach would inevitably be computationally more 

costly than the one proposed in this paper. 

 

Conclusion. In this work, we described an approach for differentiable rendering of SAR imagery 

which is a composition of techniques from computer graphics and neural rendering. We presented 

proof-of-concept results on the task of 3D object reconstruction and discussed the approach’s 

current limitations. To the best of our knowledge, this is the first successful demonstration of 

differentiable rendering for SAR-domain imagery, which we hope will serve as a useful starting 

point for others seeking to use differentiable SAR rendering in their research. 
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