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Abstract: The probability of a diffraction limited image occurring in the presence of atmospheric 
turbulence was formulated by Fried in 1978. Implications of that analysis, regarding general 
statistics of the turbulence coherence diameter for a fixed aperture size, are derived as a description 
of "Local Resolution” statistics. Local Resolution statistics, as derived in this manner, are 
parameterized in the pupil plane of an optical system. However, resolution is most usefully desired 
in the focal plane of an optical system. We demonstrate that actual values of optical point-spread-
functions (PSFs) can be used to associate, in a practical manner, Local Resolution statistics to simple 
focal plane measurements for resolution of images in the focal plane.  
 

1. Introduction 
On a hot summer day, a view across an expanse of landscape to distant hills reveals dynamism in the atmosphere. The 
heat welling-up from the ground causes every line of sight to be disturbed. The disturbances are caused by heat-driven 
motion that changes the index of refraction on any line of sight, making the hills in background seem to squirm or 
move in random, unpredictable ways, and causing the small details and features to blur. This is the visible effect of 
atmospheric turbulence. This is also the reason that stars seem to twinkle in the sky, for there is atmospheric turbulence 
present on any line of sight, no matter how strong or weak the actual source of the disturbance is. Another feature of 
atmospheric turbulence is that it is not the same along two lines of sight that are sufficiently separated. Thus, on the 
hot day, some part of the hills may be very difficult to observe while another nearby part may be sharp and well-
defined. Again, this also changes constantly. 
 
The constantly evolving nature of turbulence has led to the conclusion that conditions will occasionally occur such 
that the turbulence along some lines of sight could have favorable properties with respect to the quality of an image. 
The view of the hills in the distance could be very good and undisturbed by turbulent effects. That is, the view would 
be as sharp as allowed by the inherent optical parameter of the eye, camera, or telescope, i.e., the limitation of 
resolution for diffraction limited imaging. This phenomenon became known as a "Lucky Image".  
 
The logical development of a Lucky Image was quantified by David Fried, in a 1978 paper that is now considered a 
classic in the literature of atmospheric turbulence [1]. Fried constrained the best-case resolution of a Lucky Image by 
the physical diffraction limit of the optics, i.e., α=λ/D, where α is the resolvable angle as a function of wavelength, λ, 
and the diameter, D, of the optical aperture. He then set forth a simple equation that expressed the probability of a 
Lucky Image occurring, i.e., the probability that diffraction limited resolution is present within an image. This equation 
has since then been experimentally verified by measurements [2]. 
 
Fried also went one step beyond quantifying the probability of diffraction limited resolution across an image. He 
recognized that, even if the entire image did not achieve diffraction limited resolution, smaller regions within an image 
may take on many different resolution characteristics. In Fried's own words from his 1978 paper: 
 

“It is appropriate to note that the probability we have calculated applies independently to separate isoplanatic 
patches on the image. This means that in any one image, rather than its being entirely good or entirely poor 
resolution, there will be distributed over the image field-of-view a set of rather small regions, isoplanatic 
patches, in which the resolution is good.” [1] 

 
Fried identifies here "isoplanatic patches", which are regions wherein the image formation characteristics are the same. 
These isoplanatic patches can take on many different resolution characteristics. One patch may have good resolution, 
another patch may have poor resolution, a third patch may have resolution somewhere between good and poor, and 
so forth. Thus, Fried is describing a variation of resolutions in the image. But two natural questions arise here: 1) If 



resolutions vary in the image, how do we describe all these variations, and 2) What are the statistics of all these 
variations in resolution? Herein we present analysis to answer these questions. 

2. Consequences of the Lucky Image Equation 
The best possible resolution of an optical system is limited by the pupil opening that admits light (electromagnetic 
waves) into the optical elements that focus the light to a spot or point in the image plane. Resolution is usually 
expressed as the ability to resolve, i.e., separate or distinguish, two adjacent points in the optical field-of-view. The 
angular separation angle, 𝛼𝛼, of two points is expressed as: 
 

𝛼𝛼 =
𝜆𝜆
𝐷𝐷

 , 

 
where: 𝜆𝜆 is the mean wavelength of the light, and 𝐷𝐷 is the diameter of the pupil. As 𝐷𝐷 increases, the angular separation 
decreases and the resolution improves, as illustrated in Figure 1.  
 

This is the diffraction limited resolution, which is the best 
resolution that is assumed in the Lucky Image equation 
analysis of Fried [1]. In the presence of atmospheric 
turbulence, the resolution of the aperture diameter, 𝐷𝐷, is 
disturbed by changes of the refraction index in the line of 
sight for the optical system. This has an effect equivalent to 
breaking the aperture 𝐷𝐷  into a variety of smaller apertures. 
Thus, the optical system can no longer achieve the 
diffraction limited resolution associated with the aperture of 
diameter 𝐷𝐷 and produces lesser resolution. 
 
The effect of limited resolution due to turbulence was also 
quantified in a different paper by Fried [3]. Fried showed that 
the basic effects of atmospheric turbulence could be 
summarized by the physical quantity called the atmospheric 
coherence diameter, 𝑟𝑟0. This parameter represents the size of 
a "patch", in the optical line of sight into the pupil, where 
image characteristics are the same. Therefore, as turbulence 
increases, the value of 𝑟𝑟0 decreases. 

  
Another way to think about 𝑟𝑟0 is to consider its effect relative 
to angular resolution of the optical system. When 𝐷𝐷 ≤ 𝑟𝑟0, the 

angular resolution is less affected by turbulence than by the small aperture’s diffraction limit. However, when 𝐷𝐷 > 𝑟𝑟0, 
the image resolution is limited by a pupil aperture of diameter 𝑟𝑟0, and the turbulence prevents the system from reaching 
the diffraction limit. Obviously, as 𝑟𝑟0 decreases and turbulence worsens, the resolution decreases accordingly. 
 
With this physical picture of how coherence diameter limits resolution, Fried then pursued the effect to a case where 
separate patches in the image plane behave independently with respect to resolution. This leads to Lucky Image 
behavior, with diffraction limited resolution in some of the separate patches and resolution worse than diffraction 
limited in the remaining patches. By extensive numerical analysis, Fried produced an equation for the probability that 
a Lucky Image will occur in any patch: 
 
                                         𝑃𝑃𝐿𝐿 ≅ 5.6exp (−0.1557(𝐷𝐷/𝑟𝑟0)2)  , valid for 𝐷𝐷/𝑟𝑟0  >  3.5                                                                (1) 
 
Eq. (1) indicates the probability that diffraction limited resolution will occur as a function of the ratio of the aperture 
diameter to the atmospheric coherence diameter, 𝐷𝐷/𝑟𝑟0. As 𝑟𝑟0  →  𝐷𝐷 the probability of diffraction limited resolution 
approaches 1. As 𝑟𝑟0  →  0, the probability of diffraction limited resolution approaches 0. Clearly, this behavior is 
exactly as expected from the physical picture that was quoted from Fried above. 
 

 
Figure 1: The ability to visually separate two point sources 

occurs when the angular separation reaches λ/D. 



The distinction that we now wish to draw is the limited behavior described by Eq. (1). It describes only one probability, 
i.e., the probability of diffraction limited resolution. We contrast this with the description, in Fried's own words cited 
above, of when diffraction limited resolution is not achieved across the entire image, i.e., the case where: 
"in any one image, rather than its being entirely good or entirely poor resolution, there will be distributed over the 
image field-of-view a set of rather small regions, isoplanatic patches, in which the resolution is good."  
 
This is the consequence of the Lucky Imaging equation we focus on herein: some regions are good, some are bad, 
some are in-between, i.e., there are regions with many different resolution characteristics. Therefore: What are the 
probabilities of resolution associated with these various regions of differing resolution? Fried's analysis for the Lucky 
Image contains the information to describe these variations in resolution, as we demonstrate next. 

2.1 Image Resolution Probabilities 
The probability expressed in Eq. (1) can be given a broader interpretation than the original discussion of Fried. 
Consider the basic definition of a probability. Suppose we observe a random event, e.g., the toss of a gaming die. We 
express a specific probability associated with die taking on the value 𝑁𝑁, as 𝑃𝑃𝑁𝑁. However, all possible cases in the 
random event have a specific probability, and the sum of all the probabilities must be unity. Since the probability of 
the event taking the value 𝑁𝑁 is given by 𝑃𝑃𝑁𝑁, then the probability of the die taking any value that is not the value N 
must be given by: 
 
                                                                             𝑃𝑃𝑁𝑁� =  1 −  𝑃𝑃𝑁𝑁                                                                                         (2) 
 
This simple law of probabilities is very useful in the context of Fried's Lucky Image equation. The probability 𝑃𝑃𝐿𝐿, 
given in Eq. (1), expresses the probability that the many independent "separate" patches, described above by Fried, 
take on diffraction limited properties. But the simple reasoning, summarized in Eq, (2) above, leads to the statement: 
 
                                                                            𝑃𝑃𝑅𝑅 =  1 −  𝑃𝑃𝐿𝐿                                                                                     (3) 
 
where Eq. (3) states the probability of a region having resolution that is not diffraction limited, 𝑃𝑃𝑅𝑅. Further, we know, 
from the basic facts of optical image formation, that the best resolution that is normally1 achieved in the focal plane 
is the diffraction limited resolution. Thus, we can state for any region 𝑅𝑅, such as identified by Fried [1],  
 
                                            𝑃𝑃𝑅𝑅 =  𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃(Resolution of Region 𝑅𝑅 <  Diffraction Linited).                         (4) 
 
To summarize: Eq. (1) and Eq. (3) are complementary descriptions of the state of an image divided up into the 
"separate" regions of Fried. Eq. (1) gives the probability that separate regions have diffraction limited behavior, thus 
making the image a "Lucky Image", and Eq. (3) is the probability of any region being less than diffraction limited in 
resolution. Together, 𝑃𝑃𝑅𝑅 and 𝑃𝑃𝐿𝐿 define the probabilities of different degrees of resolution that are present everywhere 
in the image. Therefore, it is justified to adopt the following addition to Fried's characterizations and terminology. 
Since Fried called 𝑃𝑃𝐿𝐿 the "Lucky Image" probability, we will adopt the label of "Unlucky Image" probability for 𝑃𝑃𝑅𝑅. 

2.2 Unlucky Image Probability Distribution and Density 
Eq. (1) and (3) express the probability associated with specific values of the independent variables 𝐷𝐷 and 𝑟𝑟0. However, 
of more interest than a single probability is the function that generates those probabilities from values of 𝐷𝐷 and 𝑟𝑟0. 
The exponential function, of Eq. (1), is an expression that Fried made as a fit from numerical evaluations of aberrations 
in the optical pupil and is valid only for values of 𝐷𝐷/𝑟𝑟0  >  3.5. The data for that fit was presented by Fried in his 
paper. We used the values of 𝑃𝑃𝐿𝐿 tabulated in Fried's 1978 paper to make our own polynomial fit to all the data in 
Fried's paper. Through the use of Eq. (3), this gives a polynomial description for all of Fried's data, and not just the 
portion of the data to which the expression in Eq. (1) above is restricted. Thus, from our fit to Fried's tabulated data, 
we have the behavior of 𝑃𝑃𝑅𝑅, as shown in Figure 2. 
 

 
1 The qualifier "normally" above reflects the various references to the occurrence of resolution better than the 
diffraction limit in turbulence, primarily due to wavefront tilt bringing information from outside the entrance pupil 
into the pupil. However, this "super resolution" is usually found to affect only a small fraction of any resolution 
measurements in the image plane, and the corresponding resolution increase is modest, so we discount that prospect 
herein. This also conforms with the approach of Fried on which we are developing the results presented in this paper. 



The probability 𝑃𝑃𝑅𝑅 , shown in Figure 2, has several 
implications based on the overall shape that it takes. For 
values of (𝐷𝐷/𝑟𝑟0)2 that are less than 2, the value of 𝑃𝑃𝑅𝑅 
approaches zero. To understand this limit, consider an 
optical system with pupil diameter, 𝐷𝐷, operated in 
turbulence with a coherence diameter (𝑟𝑟0) that 
approaches 𝐷𝐷. Physically, the turbulence will have less 
and less impact in decreasing the achievable resolution. 
Thus, the value of 𝑃𝑃𝑅𝑅 should tend to zero, because 𝑃𝑃𝑅𝑅, as 
stated above in Eq. (4), is the probability that a region in 
the image has resolution worse than the diffraction limit. 
Alternatively, as the ratio 𝐷𝐷/𝑟𝑟0 increases, this implies 
the coherence diameter is decreasing, which naturally 
occurs as turbulence increases. The probability that a 
region has worse than diffraction limited resolution 
under these conditions increases significantly, as 
expected. toward an asymptote at unity.  

 
More significant. however, is the nature of a probability function taking the shape seen in Figure 2. Assume that there 
is a probability density function (PDF) that is compact on the real line, i.e., tends to zero except for some compact set 
of values of the independent variable. The integral of such a PDF is defined as the Cumulative Distribution Function 
(CDF) of the PDF defined as: 

                                                             
Figure 2. Thus, to get the underlying PDF from a CDF, one needs 

only to differentiate the CDF as defined from the integral above.  
 
The basic property of a CDF is that it expresses the 
probability that a random variable is less than or equal 
to a given value for the random variable, 𝑣𝑣: i.e., 
𝐶𝐶𝐷𝐷𝐶𝐶(𝑥𝑥)  =  Prob(𝑥𝑥 <  𝑣𝑣). If the random variable is the 
ratio (𝐷𝐷/𝑟𝑟0)2, then the plot seen in Figure 2 is the CDF 
for the probability of the ratio. Taking the numerical 
derivative of that function (which we can do from the 
corresponding polynomial fit of Eq. (3) that we 
discussed above) gives the plot in Figure 3. This is the 
PDF for the Unlucky Image probability and illustrates 
the range of (𝐷𝐷/𝑟𝑟0)2 values where we can expect the 
greatest rate of increase in Unlucky Images. 
 
We now have a more complete characterization of the 
phenomena that Fried described in his 1978 paper, and 
we quoted above. However, we must consider an 
important limitation in this representation. The 
parameter that is random is the ratio 𝐷𝐷/𝑟𝑟𝑜𝑜. The 
parameter 𝑟𝑟𝑜𝑜 is a quantity that exists in the pupil plane of 
the optical system, and the effects of 𝑟𝑟𝑜𝑜 are known in terms of the relationship of  𝑟𝑟𝑜𝑜 to the pupil diameter 𝐷𝐷.  

 

 
Figure 2: The probability of getting an “Unlucky Image”, 

derived from Ref. [1]. 

 
Figure 3: The probability density function (PDF) for the 

Unlucky Image probability suggests a particular range of  𝐷𝐷/𝑟𝑟𝑜𝑜 
where the rate of Unlucky Images dramatically increases. 



3. Image Plane Resolution Metrics  
We begin by reflecting on how resolution of an image is defined and affected by the image formation behavior of an 
optical system. The basic measure of resolution, the Rayleigh criterion [4], is determined by how two adjacent points 
in the object space are visible in the image plane. The image of a point source is the point-spread-function (PSF). If 
two point sources are too close together, then the images of the two PSFs overlap and obscure the presence of two 
sources, as shown in Figure 1. Resolution of an image is a basic property tied to the PSF. The broader a PSF is, the 
worse is the achievable resolution in the image plane, because increasing breadth of a PSF imposes more blur of details 
and features are "spread" out by the image formation processes that create the PSF. 
 
Next, we seek to construct a metric of how a PSF is "spread" out in the image plane due to turbulence. There are 
different ways of doing this. One metric frequently seen is the PSF encirclement. A circle of a fixed diameter is placed 
over the center of a PSF. Modeling of optical physics has led to the convention that the total integral of a PSF must 
be unity, so the image system is not modeled as losing energy in propagation from the pupil plane to the image plane. 
Thus, a circle of sufficiently small, and fixed, diameter will not enclose all the mass of the PSF and the total mass of 
the PSF will be less than unity, which we refer to as the encirclement fraction.  
 
Clearly, encirclement fraction is a measurement of resolution. Further, it is a metric that is directly acquired in the 
image plane, and thus will have the desired behavior stated above: a description of resolution that does not depend on 
the pupil plane but exists in the image plane. For practical reasons, we will adopt a simple modification of PSF 
encirclement that is more common in recent years, PSF ensquarement. This is the same as PSF encirclement, except 
a square is placed on the center of the PSF, and the fraction of PSF mass in the square is computed. The motivation 
for ensquarement is simple. The prevalence of semiconductor image detectors, with rectilinear layout of the detector 
photosensitive wells, makes ensquarement operations into simple counting operations of the detected image pixels. 2 
 
The ideal approach would be to calculate ensquarement on the actual PSF of turbulence by taking the analytical or 
algebraic expression for a turbulent PSF produced and imposing an ensquarement upon the expression to determine 
the fraction of the PSF within the ensquarement. Unfortunately, this is not possible. First, turbulence consists of two 
general components. The first is how turbulence induces an overall tilt to the wavefront that propagates through 
variations the index of refraction. This tilt, arriving in the pupil plane, causes a general shift of image formation in the 
image plane. This is seen when the image of a PSF in turbulence wanders constantly across the image plane. The 
second component of turbulence relates to the higher-order aberrations that cause a random "wrinkling" of the 
wavefront. Analytical derivations of the average spatial frequency effects of this wavefront exist, but an analytical 
expression of the PSF caused by the spatial frequency disturbances has not been derived or published. 

3.1 PSF Resolution in the Image Plane  
Lacking an analytical calculation of turbulence ensquarement for the turbulence PSF we have adopted a data-driven 
approach that has proven to be useful for revealing the nature of local resolutions due to the "Unlucky Image" process 
in the image plane. We had access to a large set of digital image collections of PSFs taken in turbulence. The PSF 
collections were made by the USAF Research Laboratory at Wright-Patterson Air Force Base in September 2015. 
Complete details concerning the collections and various parameters can be found in a previous publication [5]. We 
selected a set of PSFs from this imagery that were obtained in the presence of substantial atmospheric turbulence. A 
scintillometer used in the experimental collections recorded values of the turbulence constant, 𝐶𝐶𝑛𝑛2 , in the range of 
10−14. This corresponds to a value for the Fried coherence diameter of 2.2 cm, which is much stronger, and more 
damaging to image quality, than would be acceptable in observational astronomical science. 
 
From the selected set of PSF images we extracted a total of 800 measured PSF images. These 800 were chosen by 
testing individual PSFs, with a noise detection and thresholding algorithm, and retaining those PSFs that possessed 
sufficient signal-to-noise ratio to warrant ensquarement calculations. We then calculated the center-of-mass of each 
PSF and translated each so that the PSF was in the center of a frame of 65 × 65 pixels (at pixel coordinates 33, 33 for 
the center of the PSF frame). This translation also eliminated effects of wavefront tilt, leaving only the higher order 
aberrations that are of interest for the variations in resolution that we are considering. Squares could then be placed 
symmetrically around each PSF and making the ensquarement calculations simpler, accordingly.  

 
2 It is also simple to relate ensquarement to encirclement, if that is preferred. A circle, inscribed within, and touching 
the sides of a circumscribing square, has an area that is 𝜋𝜋/4 times the area of the circumscribing square. This simple 
conversion factor can be used to relate any ensquarement values to encirclement values.  



 
Figure 4 is an arbitrary selection of three of the PSFs, showing asymmetry, dispersion about the center, and random 
structure. These PSFs display considerable spread of optical energy from an initial point source and are not unusual 
as being representative of imaging conditions in situations of strong atmospheric turbulence. 

 
Figure 4: Three randomly selected 65x65-pixel PSF examples, illustrating the variety of turbulent effects seen in the dataset. 

 
A square of any size can be placed around each PSF, then the fraction of its total PSF mass within that square was 
calculated. We call the portion of the PSF within the square the ensquarement fraction. The size of the square 
determines the measure of PSF resolution in the image plane. Therefore, it is important to choose a square that is large 
enough to encompass a substantial, but not total, portion of the PSF mass. Thus, if the square were too small, the mass 
in the square would tend to be small and the ensquarement fraction would show very little variation. Conversely, if 
the square were too large almost all the mass of the PSF would be enclosed and again ensquarement fractions would 
show very little variation, tending to be large and unchanging.  

 
A "Goldilocks" middle size is desired. Some simple experiments and observations of PSFs in the total dataset led to 
the choice of a square of 35 × 35 pixels as satisfactory. An additional set of ensquarement statistics was collected for 
a 17  ×  17 ensquarement, in order to provide information from a significantly smaller ensquarement as contrast to the 
larger ensquarement case. Size references, relative to the full 65 × 65 size of the three example PSFs, are shown in 
green and red at the right of Figure 4. 

3.2 Unlucky Image Probability in the Image Plane  
All 800 PSFs were ensquared in the two sizes indicated in Figure 4, and the corresponding ensquarement fractions 
were calculated. This ensquarement data was analyzed in two different ways. First, a histogram of the ensquarement 
fraction values was computed, as shown in blue in Figure 5.  
 

 
Figure 5: Ensquarement fraction histograms (blue) and empirical probability distributions (red) for 35x35-pixel squares (left) 

and 17x17-pixel squares (right). 



A histogram can also be normalized to make a rough estimate of the Probability Density Function (PDF) that is present 
in a set of data, but a more sophisticated analysis is to fit a known probability distribution to the total of all the 
ensquarement fraction data. The shape of the histogram of the data is used as a direct guide to the type of distribution 
that may be used for the fit. The histograms in Figure 5 suggested that the fit be made with probability distributions 
having the same general shape as seen in Figure 3, i.e., a peak in the left of the distribution and a long-right-tail.  
 
Three common distributions have such a shape: the Rayleigh distribution (fitted by one parameter) and the Gamma 
and Lognormal distributions (fitted by two parameters). However, the fits of these probability distributions were not 
satisfactory. In all three fits, to both sets of ensquarement fraction data, the left-hand peak was much broader than the 
peak exhibited at the left in the histograms. Further, in all three parametric fits, the right-hand-tails of the fits were not 
as lengthy as the tail present in the histograms computed from the data. Thus, since the fit to standard probability 
distributions was not successful, the decision was made to fit the ensquarement fraction data by a non-parametric 
probability distribution procedure. The fit was performed by the kernel-smoothing density estimation algorithm [6], 
shown in red in Figure 5. 

4. Conclusions 
The image plane results discussed in Section 3 and summarized in Figure 5 prompt the following conclusions: 

• First, the ensquarement peak being in the left half of the data is due to PSFs possessing significant mass 
outside the ensquarement. If most of the mass of a PSF is contained in the square, then the ensquarement 
fraction will approach unity. Conversely, when there is substantial PSF mass inside the ensquarement, the 
ensquarement fraction increases. Both graphs exhibit a pronounced peak at the left, indicating PSFs in the 
data set are wide and dispersed across the image plane, with lesser numbers of PSFs being smaller and more 
contained with the ensquarement. This is not surprising, since visual inspection of PSFs show such 
dispersion, as exemplified in Figure 4 above. 

• Second, the left-hand peaks and right-hand tails that are seen in both data sets are evidence that the squares 
placed on the PSFs are neither too large nor too small. If the square placed on the PSF is too small the values 
of ensquarement fractions will be small, nearing zero. if the PSF is too large the values of ensquarement 
fractions will approach one. In either case no information would be acquired about the differing resolutions 
that are present in a set of PSFs. Full-range statistical variability is expected for "Goldilocks" size squares. 
The decrease in ensquarement fraction probability in the left hand tail for the 17 × 17 ensquarements indicate 
the 17-pixel size may be too small for adequate capture of variations in image plane resolution. 

• Third, the greatest difference between the plots in Figure 5 shows numerical values that are shifted to the left, 
for the 17 × 17 squares compared to the 35 × 35 squares. In other words, the ensquarement fractions are 
smaller for the 17 × 17 ensquarements. The fact that the two plots are similar in shape, but different in actual 
values, is due to the variability in PSF sizes, which directly affects the resolution of image data that would 
be collected with such PSFs. For a smaller square, fewer PSFs will have greater mass within the square, the 
opposite being true for a larger square. The shift to the left, for a smaller square is confirmation that 
ensquarement behaves as expected for a metric of resolution in the image plane. 

• Fourth, and most significantly, actual resolutions (measured by ensquarement in the image plane) show 
behavior as PDFs that have the same overall shape as the PDF seen above in Figure 3. The PDF in Figure 3 
was derived strictly by the mathematical consequences of probability and the published data embedded in 
Fried's analysis in 1978. Confirmation of Figure 3 with real PSF data is the achievement we report here. 

 
The graphs above confirm the original insight expressed by Fried in the 1978 paper, i.e., images collected under 
turbulence have varying resolutions across the image plane of an optical system. Thus, an image acquired through the 
optical system that collected the PSF images seen above would have resolutions that change with position in the image 
plane. Some of those image regions would approach diffraction limited behavior, the "Lucky Images", but most would 
not and would be the "Unlucky Images", as we characterized them. 

5. Closing Remarks 
The basic "Lucky Image" formulation of Fried contained within it more than the probability of a Lucky Image. Directly 
from Fried's published Lucky Image data we were able to derive the probability distribution of resolutions in the many 
separate and independent regions of an image. Further, we are able to directly confirm these statistics of Unlucky 
Image resolution on the basis of the metric of ensquarement of PSFs. It should be noted that ensquarement is not the 
only metric of resolution that could be used for examining the distribution of Unlucky Image resolutions. A graph 



similar to those in Figure 5 is found in a PhD dissertation on Lucky Imaging [7] using the resolution criterion of Strehl 
ratio. The results we present here establish the probabilistic and mathematical connections of such empirical 
observations to the basic results originally presented by Fried. We observe, in closing, that Fried's analysis is in the 
context of constant coherence diameter, 𝑟𝑟0, for observing of the Local Resolution statistics. However, there is always 
a larger ensemble of possible 𝑟𝑟0 behavior in any "real-world" experience of turbulent atmosphere. Thus, any significant 
shift or change in Local Resolution statistics could be developed as a detection mechanism for time-varying turbulence 
strength.  
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