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Abstract: Space Domain Awareness (SDA) is important for understanding the space environment to ensure safe 
operation of space missions. SDA activities include the detection, identification, tracking and characterizing of 
artificial satellites. SDA objectives rely greatly on the information that can be gained from ground-based sensors, 
such as optical telescopes. A space object may be detected by a telescope when it passes in front of a star. There 
have been studies of how the shadow cast to Earth from a star can be interpreted for important data, referred to as 
Shadow Imaging. Herein we discuss the usage of information theoretic methods to understand the limitations of 
stellar Shadow Imaging. These methods measure the information content in the irradiance pattern, as seen by a 
terrestrial observer, from the shadow cast by a geosynchronous space object passing in front of a stellar source. 
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1 Introduction: Shadow Imaging 

The capabilities to launch and operate satellites in orbit around the Earth by both nation-states and the private sector 
have significantly expanded in the past decade. The number of space systems in operation, and the pace of 
expanding space assets, continue to accelerate. The field of Space Domain Awareness (SDA), formerly referred to as 
Space Situational Awareness (SSA), is focused on the problem of understanding the space environment and potential 
issues such as debris or potential conjunctions. SDA encompasses the effective identification, characterization and 
understanding of any factor associated with the space domain that could affect space operations and thereby impact 
the security, safety, economy, or environment of the United States of America [1]. 

Traditionally, SDA has been enabled by globally distributed optical and radar systems. For example, telescopes have 
been deployed around the world to detect and observe space object behavior and characteristics. However, many 
objects are in orbits which are too high for any but the largest telescopes to produce a resolved or partially resolved 
image. For example, a telescope with a primary mirror of 2.5 m diameter, imaging in the center of the visible band 
gives diffraction limited angular resolution of details at approximately 22 cm for an object at orbital altitude of 1000 
km. Atmospheric effects (such as atmospheric refraction, dispersion, line-of-sight turbulence, water vapor, ...) 
further impact the resolvable details. Some of these effects can be overcome by post-processing techniques, but low 
signal-to-noise ratio (SNR) when imaging dim objects presents a difficult challenge.  

For observation of dim objects, or where traditional imaging is not feasible, the possibility has emerged of observing 
the shadow produced by obstruction of light from a distant source by a space object. This phenomenon is known as 
occultation. The observation of a shadow produced by occultation using a single collection aperture was first 
proposed in 1952 by Taylor [2]. A shadow of the asteroid Pallas was first successfully observed in 1978 [3]. 
Occultation studies have since begun to appear more frequently in astronomical journals. The search for objects 
and/or characterization of the Kuiper Belt, i.e., objects beyond Neptune, by occultation of stars is a notable area of 
application [4] [5].  

The developments in astronomy are complemented by the identification of shadow imaging as a potential new tool 
for SDA, first proposed in 2005 [6]. Shadow imaging seeks to exploit the shadow cast by a space object when it 
obstructs the line of sight between an observer and a stellar source (or perhaps an object in our solar system). The 
shadow irradiance pattern produced at the observer contains information about the object’s silhouette which is 
degraded mainly by free space scalar diffraction effects and detector noise. The main proposition of shadow imaging 
is that this pattern can be measured well enough to support solving the inverse problem of recovering the silhouette 
image. In this paper, we discuss the information content of the irradiance patterns and how this relates to 
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understanding the limits of performance of a shadow imaging system. This information content is approached in a 
general way as measured in the irradiance pattern, treated as an image, as well as how it supports a specific 
exploitation task, i.e., the localization of a knife edge.  

1.1 Occultation by Orbiting Satellites and Shadow Imaging for SDA 

The nature of the occulted light source is of central importance to understanding the measured data. Stellar sources 
differ in such details as size and spectral content. Many stellar sources can be treated as unresolved point sources, 
but there are stellar objects that are large enough or close enough to have significant angular extent. In the former 
case, the electromagnetic waves can be treated as plane waves. For the latter, the light can be modeled as a radially 
distributed set of plane waves. The orbital regime of the satellite is also of importance. Low Earth Orbit (LEO), 
Medium Earth Orbit, (MEO), and Geosynchronous Earth Orbit (GEO), all differ in orbital velocity and the specific 
track geometry across the face of the Earth for any shadow cast by occultation.  

In [6], the stellar point source illumination was assumed to be an incoherent plane wave arriving at a GEO object, 
with the shadow occurring past the object formed by diffraction. The inverse problem of recovering the object 
silhouette was dealt with using a version of the Gerchberg-Saxton algorithm developed for phase retrieval [7]. For 
observed diffraction phenomena consistent with the Fresnel region the intensity ringing around the shadow's extent 
can be observed and exploited in the reconstruction process. The size and range from the Earth of GEO satellites 
results in shadows within the Fresnel region for terrestrial based observations using visible wavelengths.  

Shadow imaging of GEO satellites was examined in further detail in 2008 [8], introducing the concept of spectrally 
resolved shadow imaging which sought to increase the amount of attainable spatial resolution assuming sufficiently 
high SNR. This was achieved by splitting the collected light into spectral bins and performing the image 
reconstruction separately on each bin. The final image results from stacking the individual reconstructed silhouette 
images produced from each spectral bin. 

Several system-implementation issues have been considered in assessing the viability of collecting and using 
shadows of orbiting satellites cast from point sources. These initial analyses of the various challenges of shadow 
imaging indicated that shadow imaging from a star may be a viable way to create a representation of the silhouette 
of a space object [6] [9] [10].  

Work by Douglas [9] examined the image resolution limits of shadow imaging using a radiometrically based wave 
optics simulation approach by varying environmental, observational, and light collection parameters. Recent work 
has concentrated on examining various reconstruction algorithms based on the Fresnel integral approach as well as 
predicting when and where GEO shadow events will occur on the Earth [10].  

It is important emphasize that successful inversion of the diffraction pattern from a stellar occultation yields an 
estimate of the object silhouette, not a gray-scale image of the satellite. A silhouette lacks the interior detail that 
would be present in a gray-scale image, and is only the outline of an object, but can reveal details of interest for 
SDA. Object size, major components and their configurations, articulations of such components over time, and the 
object orientation with respect to the observer are all examples of relevant details potentially derived from a 
silhouette image of sufficient spatial resolution.  

A conceptual Earth-based shadow imaging system like that proposed in [6] is depicted in Figure 1, in which a linear 
array of apertures arranged in a north-south direction on the Earth is used to collect light as a two-dimensional 
shadow moves across. For a space object at GEO distance, the sidereal motion of the Earth causes its shadow to 
move from west to east at approximately 2.6 km/s near the equator.  
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Figure 1. Two-dimensional shadow observation (imaging) of geosynchronous satellite. Note that the depiction is not to scale. 

1.2 Motivation 

Ultimately, we hope to show that information theory is a helpful concept in understanding the performance limits of 
shadow imaging systems, as well as how different system parameters come into play. Wavelength dependence can be 
added with obvious modifications to the above discussion. This is approached in two ways: (1) by computing 
information in the ground irradiance patterns as a whole; and (2) by computing information related to a particular task, 
i.e., knife edge localization. 

2 RESOLUTION LIMITS 

The fundamental resolution limits for shadow imaging were analytically derived as a function of spectral bin width 
and collection aperture size 𝐷𝐷𝑎𝑎𝑎𝑎 in [8] [11], and studied statistically in [12]. This section summarizes the main findings 
from these sources for convenience. 

2.1 Analytic Studies of Shadow Imaging Resolution 

In prior work, the resolution of shadow imaging was studied using analytical approaches [8] [11]. The results of these 
efforts, which used an equivalent Fresnel number approach, are summarized here for convenience.  

• Fine features of the collected polychromatic diffraction pattern are blurred resulting in a loss of resolution in 
the final reconstructed image as the spectral bin width bins increases. 

• The resolution limit in terms of resolvable object half-width size is given by 

 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 = 2 ∗ ��𝜆𝜆2𝑧𝑧 − �𝜆𝜆1𝑧𝑧� (1) 
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where 𝜆𝜆1 and 𝜆𝜆2 are the wavelengths of the beginning and end of the spectral bin, respectively, and 𝑧𝑧 is the 
propagation distance [11]. 

• The resolution limit as a function of spectral binning and collection aperture size is given by (augmenting the 
previous equation by including the factor derived in [8]) 

 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 = 2 ∗ ��𝜆𝜆2𝑧𝑧 − �𝜆𝜆1𝑧𝑧� + 0.61𝐷𝐷𝑎𝑎𝑎𝑎 (2) 

• The propagation distance also impacts the resolution limit based on spectral bin width, but a considerable 
difference in propagation distance from the nominal GEO range of 36,000 km is required to influence the 
resolution limits. 

• The classical resolution limit 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐  given by the Rayleigh criteria is given by 

 
𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐 = 1.22

𝜆𝜆𝜆𝜆
𝐷𝐷𝑎𝑎𝑎𝑎

 (3) 

By comparing these equations, the differences in how aperture size and wavelength affect the resolution limits of 
classical imaging and shadow imaging becomes clear. These differences can be summarized as the following [11]: 

• The resolution limit becomes finer as 𝐷𝐷𝑎𝑎𝑎𝑎 increases in classical imaging, while in shadow imaging smaller 
apertures yield better resolution. This assumes there is a sufficient signal-to-noise ratio (SNR). 

• Better resolution is attained when using shorter wavelengths in classical imaging. In shadow imaging, the 
spectral bin width determines the resolution limit, and the resolution is less sensitive to the starting 
wavelength of a given spectral bin. 

• The classical resolution limit is linearly dependent on the object distance. In shadow imaging the resolution 
limit is proportional to the square root of the distance to the object. 

2.2 Empirical Studies of Shadow Imaging Resolution 

Empirical studies also exist in which simulation was used to understand shadow imaging system performance. 
Notably, the dissertation by Douglas [9] examines many system parameters to reveal their influences. In our work, 
we focus on some of the empirical studies in which visual estimates were made and relate those to information 
content. 

In [12], the knife edge localization problem was used as a surrogate for understanding the resolution of a shadow 
imaging system. The root-mean-squared-error (RMSE) was computed for monochromatic and polychromatic cases 
and related to statistical bounds, including the Cramér-Rao and Hammersly-Chapman-Robbins bounds. Large-scale 
Monte Carlo methods were used to show the bounds for a set of assumed system parameters. In our work, we 
attempt to parallel their work in terms of task specific information, described below.  

3 Shadow Imaging and Shannon Information 

Information theory as applied to image processing has a long history as a means of understanding both the 
information content of single images, motion imagery sequences, and the optical channel itself. The motivation here 
is to use information theoretic techniques to understand the limits of a shadow imaging system performance, i.e., the 
ability to quantify it in terms of the information content in the ground irradiance patterns. Information content in the 
irradiance pattern is of interest, as is the information content as it relates to a specific task to be performed with the 
measured pattern.  

3.1 Information and the Optical Channel 

One of the earliest contributions to information theory as it relates to optical systems is that found in the classic 
paper by Fellget and Linfoot [13]. The main contribution in that paper was to quantify information transmission 
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through an optical channel in a very general way, and to express it in terms of power spectra of the signal and noise. 
This is useful in quantifying information content in the shadow ground irradiance pattern, and to understand the 
losses due to scalar diffraction (wave optics propagation) incurred between the aperture and the ground plane.  

3.1.1 Overview 

Shannon channel capacity is reviewed here as applied to the optical channel and the resulting shadow irradiance 
pattern. This will be used later to re-examine some of the findings from Douglas [9] and McNicholl [12]. This will 
be applied later to empirical studies relying on simulated shadow imaging.  

3.1.2 Information Content Model for Image Channel 

The shadow imaging system consists of a stellar source, a satellite situated in the aperture plane, and the ground 
(sensor) plane located where the shadow falls on the Earth. The satellite itself is assumed to be non-transmissive. 
From [13], the monochromatic mean information content observed in the ground plane irradiance pattern can be 
expressed as  

 
log 𝑁𝑁 =

1
2
� log2 �1 +

|𝐺𝐺(𝑢𝑢, 𝑣𝑣)|2�������������

|𝑊𝑊(𝑢𝑢, 𝑣𝑣)|2� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (bits) (4) 

where  

• 𝑓𝑓 is the satellite aperture function, 
• 𝑔𝑔 is the pristine, noise free, measured ground irradiance pattern, 
• 𝑤𝑤 is the noise in the measured diffraction pattern, 
• |𝐺𝐺(𝑢𝑢, 𝑣𝑣)|2������������� is the power spectrum (periodogram) of 𝑔𝑔, 
• |𝑊𝑊(𝑢𝑢, 𝑣𝑣)|2 is the power spectrum of 𝑤𝑤. 

Noise originating from the object is assumed to be small compared to the measurement noise, and the log function is 
base 2 so that the information is in units of “bits.” The polychromatic mean information content is given by  

 
log 𝑁𝑁 =

1
2|𝐵𝐵|� log�1 +

|𝐺𝐺(𝑢𝑢, 𝑣𝑣, 𝜆𝜆)|2���������������

|𝑊𝑊(𝑢𝑢, 𝑣𝑣, 𝜆𝜆)|2� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (bits − nm−1) (5) 

where |𝐵𝐵| is the spectral bin width (in nanometers). Lastly, this result can be extended to the discrete-to-discrete 
imaging case (offered without proof): 

 
log 𝑁𝑁 =

1
2|𝐵𝐵| � log�1 +

|𝐺𝐺[𝑢𝑢, 𝑣𝑣, 𝜆𝜆]|2���������������

|𝑊𝑊[𝑢𝑢,𝑣𝑣, 𝜆𝜆]|2�  (bits − nm−1)
𝑢𝑢,𝑣𝑣,𝜆𝜆

 (6) 

where periodograms are used to represent the power spectra. This version is the one used in the empirical studies 
described in subsequent sections. 

3.2 Task-Based Information 

An understanding of the information content in the optical channel is of central importance. However, in many cases 
it is desirable to understand the information content with respect to a particular image processing task, such as the 
detection of a tumor in medical imagery. There is a significant body of work devoted to the discovery of image 
quality metrics that might indicate how successful such tasks may be given a particular imaging system. For 
example, the relationship between Shannon information and receiver operating characteristic (ROC) curves has been 
published for detection problems [14]. The concept of task specific information (TSI) relates the canonical Shannon 
information to the minimum mean-squared-error (MSE) estimator for a given task [15]. This work focuses on the 
application of TSI to understanding shadow imaging system resolution through the examination of the knife edge 
localization task considered in [12]. 
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3.2.1 TSI Problem Statement 

The following is a brief review of the statement of the TSI problem. 

 
Figure 2. A model of the forward imaging channel. 

The components of an imaging system are show above in Figure 2,where blocks in the diagram represent the 
following:  

• The scene 𝑌𝑌 is processed by the optical channel to yield 𝑍𝑍 = ℋ(𝑌𝑌) 
• 𝑍𝑍 is then corrupted to yield the noisy measurement 𝑅𝑅 = 𝒩𝒩(𝑍𝑍) 
• The encoder 𝒞𝒞 (deterministic or stochastic) produces a scene based on input from the virtual source 

Task Specific Information: information in an image or signal that is relevant to a specific task. TSI is the Shannon 
mutual information 𝐼𝐼(𝑋𝑋;𝑅𝑅) between the virtual source and the measurements: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐼𝐼(𝑋𝑋;𝑅𝑅) = 𝐽𝐽(𝑋𝑋) − 𝐽𝐽(𝑋𝑋|𝑅𝑅) (7) 

where 𝐽𝐽(𝑋𝑋) = −𝔼𝔼�log�𝑝𝑝𝑝𝑝(𝑋𝑋)�� is the entropy of 𝑋𝑋, and 𝐽𝐽(𝑋𝑋|𝑅𝑅) = −𝔼𝔼�log�𝑝𝑝𝑝𝑝(𝑋𝑋|𝑅𝑅)�� is the entropy of 𝑋𝑋 
conditioned on the measurement 𝑅𝑅, 𝔼𝔼{∙} denotes statistical expectation, and 𝑝𝑝𝑝𝑝(∙) denotes the probability density 
function, and logarithms are taken to the base 2. The entropy of 𝑋𝑋 defines the maximum TSI content of any image 
measurement. Computing TSI directly from this equation is generally intractable [15]. One may consider the 
application of TSI to the task of knife edge localization: 

TSI takes advantage of a new information theory result which provides a direct relationship between the mutual 
information 𝐼𝐼(𝑋𝑋;𝑅𝑅) and the minimum mean-square error (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) in estimating 𝑋𝑋 from 𝑅𝑅. Given the additive 
Gaussian channel 𝑅𝑅 = √𝑠𝑠𝑋𝑋 + 𝑁𝑁, where 𝑁𝑁 is additive Gaussian noise with variance 𝜎𝜎2 = 1, and 𝑠𝑠 is the signal-to-
noise ratio, the relationship is given by:  

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼(𝑋𝑋;𝑅𝑅) =

1
2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

1
2
𝔼𝔼[|𝑋𝑋 − 𝔼𝔼(𝑋𝑋|𝑅𝑅)|2] (8) 

where 𝔼𝔼(𝑋𝑋|𝑅𝑅) is the conditional mean estimator [16]. Results for Poisson channels have also been published [17]. 
Extension to the linear vector Gaussian channels where ℋ�𝑋⃗𝑋� = 𝐇𝐇𝑋⃗𝑋, where 𝐇𝐇 denotes the matrix channel operator 
and 𝑋⃗𝑋 is the vector channel input are also available 𝑅𝑅�⃗ = √𝑠𝑠𝐇𝐇𝑋⃗𝑋 + 𝑁𝑁��⃗ k, where 𝑁𝑁��⃗  follows a multi-variate Gaussian 
distribution with covariance 𝛴𝛴𝑁𝑁��⃗ . In this case, the relationship is given by: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼�𝑋⃗𝑋;𝑅𝑅�⃗ � =

1
2
𝔼𝔼 ��𝐇𝐇𝑋⃗𝑋 − 𝔼𝔼�𝐇𝐇𝑋⃗𝑋|𝑅𝑅�⃗ ��

2
� =

1
2

Tr�𝐇𝐇†𝛴𝛴𝑁𝑁��⃗
−1𝐇𝐇𝐇𝐇� (9) 

where 𝐇𝐇† is the Hermitian conjugate of 𝐇𝐇, and  

 𝐄𝐄 = 𝔼𝔼 ��𝑋⃗𝑋 − 𝔼𝔼�𝑋⃗𝑋|𝑅𝑅�⃗ �� �𝑋⃗𝑋 − 𝔼𝔼�𝑋⃗𝑋|𝑅𝑅�⃗ ��
𝑇𝑇
� (10) 

Results are also available for a stochastic encoding of 𝑋⃗𝑋 [16]: 

 𝑅𝑅�⃗ = √𝑠𝑠𝐇𝐇𝐇𝐇�𝑋⃗𝑋� + 𝑁𝑁��⃗  (11) 

The TSI estimation problem for the shadow imaging modality with a knife edge satellite aperture function can be 
formulated using the structure for the general localization task in [15], Section 2. This can be summarized as: 

 The virtual source 𝑋𝑋 localizes the knife edge to one of Q regions in the satellite aperture plane 
 The encoding operator 𝐂𝐂𝑘𝑘𝑘𝑘 is linear, and can be stochastic 
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 The channel operator 𝐇𝐇 is linear (discrete-to-discrete) and represents the wave propagation from the 
aperture plane to the ground plane 

 The noise model 𝑁𝑁��⃗  is zero-mean AWGN with covariance 𝛴𝛴𝑁𝑁��⃗  

The upper bound on TSI for this problem is the entropy of 𝑋𝑋 

 𝐽𝐽(𝑋𝑋) = −∑ Pr(𝑋𝑋 = 𝑞𝑞) log Pr(𝑋𝑋 = 𝑞𝑞) ≤ [log𝑄𝑄]𝑄𝑄
𝑞𝑞=1  bits (12) 

From the diagram of Figure 2, the imaging model is given by 

 𝑅𝑅�⃗ = √𝑠𝑠𝐇𝐇𝐂𝐂𝑘𝑘𝑘𝑘(𝑋𝑋) + 𝑁𝑁��⃗  (13) 

The stochastic encoding operator is given by  

 𝐂𝐂𝑘𝑘𝑘𝑘(𝑋𝑋) = 𝐊𝐊𝚲𝚲(𝑋𝑋)𝜌⃗𝜌 (14) 

where: 

 𝐊𝐊 is a matrix whose columns contain all possible 𝑀𝑀 × 𝑀𝑀 knife edge images, lexicographically stacked 
 𝚲𝚲(𝑋𝑋) acts as a localization matrix and selects all knife edge images in the region specified by the source 𝑋𝑋 
 𝜌⃗𝜌 denotes the position of the knife edge within a region, and is a nuisance parameter  
 If used, for 𝑋𝑋 = 𝑖𝑖, 𝜌⃗𝜌 randomly selects one of the 𝑃𝑃𝑖𝑖  available knife edge images, making 𝐂𝐂𝑘𝑘𝑘𝑘 a stochastic 

encoder 
 Precise definitions of these variables generally follow Section 2.D of Ref. [15] 

Substituting into Eq. (8) yields a means to compute the TSI by numerically integrating the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻 function. 

 
𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) = 𝐼𝐼�𝑋𝑋;𝑅𝑅�⃗ � =

1
2
� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻(𝑠𝑠′)
𝑠𝑠

0
𝑑𝑑𝑠𝑠′ (15) 

where 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻(𝑠𝑠) =
1
2

Tr �𝐇𝐇†𝛴𝛴𝑁𝑁��⃗
−1𝐇𝐇�𝐄𝐄𝑌𝑌�⃗ − 𝐄𝐄𝑌𝑌�⃗ |𝑋𝑋��, (16) 

 𝐄𝐄𝑌𝑌�⃗ = 𝔼𝔼 ��𝑌𝑌�⃗ − 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ �� �𝑌𝑌�⃗ − 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ ��
𝑇𝑇
� (17) 

 𝐄𝐄𝑌𝑌�⃗ |𝑋𝑋 = 𝔼𝔼 ��𝑌𝑌�⃗ − 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ ,𝑋𝑋�� �𝑌𝑌�⃗ − 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ ,𝑋𝑋��
𝑇𝑇
� (18) 

Closed form solutions for 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ � and 𝔼𝔼�𝑌𝑌�⃗ |𝑅𝑅�⃗ ,𝑋𝑋� are given in Ref. [15], Appendix A. In the following section the 
implementation of the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻 estimator for this problem is discussed. 

3.2.2 Knife Edge Location Estimator 

In [12], a maximum likelihood estimator was derived for fixed knife edge location. The parameter which locates the 
knife edge in the present study is random and provides a source of entropy. The Bayes estimation using the mean-
square error cost function and maximum a posteriori (MAP) estimation can be stated fairly directly. Following the 
development in [12], a series of photon arrivals at the observation plane may be specified by their spatial 
coordinates, ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��, the MAP estimate is the location where the following equation for 𝑙𝑙(𝜃𝜃) is maximized 

 ln𝑝𝑝��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗��|𝛩𝛩���𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗��|𝜃𝜃� = 

ln𝑝𝑝𝛩𝛩|��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗���𝜃𝜃|��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��� + ln𝑝𝑝𝛩𝛩(𝜃𝜃) − ln𝑝𝑝��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗�� ���𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��� 
(19) 

 𝑙𝑙(𝜃𝜃) ≜ ln𝑝𝑝𝛩𝛩|��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗���𝜃𝜃|��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��� + ln𝑝𝑝𝛩𝛩(𝜃𝜃) (20) 

and neglecting the right-most term which is not a function of the unknown parameter. It is well known that the 
minimum MSE estimate is given by the conditional mean: 



Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2024-1862. 

 
𝜃𝜃�𝑚𝑚𝑚𝑚 = � 𝜃𝜃

∞

−∞
𝑝𝑝𝛩𝛩|��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗���𝜃𝜃|��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗���𝑑𝑑𝑑𝑑 (21) 

See Section 2.4.1 of Ref. [18]. The PDF for the observed photon sequence (monochromatic case) is given by  

 
𝑝𝑝��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗��|𝜃𝜃���𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��|𝜃𝜃� =

𝑒𝑒−𝑁𝑁�

𝑁𝑁!
�Λ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�; 𝜃𝜃�
𝑁𝑁

𝑗𝑗=1

 (22) 

where Λ ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�; 𝜃𝜃� is the intensity function at the observation plane in photons/meter^2, and 𝑁𝑁 is the total number 

of photons received at the observation plane, given by a Poisson distribution of mean 𝑁𝑁� = ∫Λ ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�; 𝜃𝜃�. 

If the parameter were fixed, then the likelihood function would be given by  

 
𝑙𝑙𝑚𝑚𝑚𝑚(𝜃𝜃) = 𝑁𝑁�(𝜃𝜃) + � ln �Λ ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�; 𝜃𝜃��

𝑁𝑁

𝑗𝑗=1

 (23) 

and the maximum-likelihood estimate is the value of 𝜃𝜃 which maximizes this likelihood given the data ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�� 

It is necessary to derive the functional form of  

 𝑝𝑝𝛩𝛩|��𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗���𝜃𝜃|��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��� (24) 

used in the MAP equation. For the knife edge case, estimating the parameter 𝜃𝜃 is equivalent to estimating the 
intensity function since the function is completely specified by it. See Chapter 3 of Ref. [19]. 

 𝛬𝛬𝐾𝐾𝐾𝐾 ��𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗�;𝜃𝜃� = 𝐼𝐼𝐾𝐾𝐾𝐾0𝑔𝑔𝐾𝐾𝐾𝐾0 ��𝑥𝑥𝑗𝑗 − 𝜃𝜃,𝑦𝑦𝑗𝑗�� (25) 

For a vertically oriented knife edge, we can sum over 𝑦𝑦𝑗𝑗 

 𝛬𝛬𝐾𝐾𝐾𝐾(𝑥𝑥; 𝜃𝜃) = 𝐼𝐼𝐾𝐾𝐾𝐾0𝑔𝑔𝐾𝐾𝐾𝐾0(𝑥𝑥 − 𝜃𝜃) (26) 

where 𝐼𝐼𝐾𝐾𝐾𝐾0 is now 𝐼𝐼0𝑊𝑊𝑦𝑦 (where 𝐼𝐼0 is the photoelectron rate/unit area, and 𝑊𝑊𝑦𝑦 is the meridional length of the shadow 
imaging telescope array). The summed distribution can be well approximated as Gaussian by appeal to the Central 
Limit Theorem. The probability mass function of the meridionally summed counts in bin 𝑋𝑋𝑖𝑖 with zonal axis bin 
center at 𝑥𝑥𝑖𝑖, is a lattice random variable, and can be approximated as: 

 𝑃𝑃{𝑋𝑋𝑖𝑖 = 𝑘𝑘|𝜃𝜃} = 𝑓𝑓𝑋𝑋𝑖𝑖|𝜃𝜃(𝑘𝑘) =
1

𝜎𝜎𝑖𝑖√2𝜋𝜋
𝑒𝑒−(𝑘𝑘−𝜂𝜂𝑖𝑖)2/2𝜎𝜎𝑖𝑖

2
 (27) 

where 𝑘𝑘 = 0,1,2, …, and 

 𝜂𝜂𝑖𝑖 = 𝜂𝜂𝑖𝑖,1 + ⋯+ 𝜂𝜂𝑖𝑖,𝑛𝑛𝑦𝑦 (28) 

 𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑖𝑖,12 + ⋯+ 𝜎𝜎𝑖𝑖,𝑛𝑛𝑦𝑦
2  (29) 

given 𝑛𝑛𝑦𝑦 = 𝑊𝑊𝑦𝑦/∆𝑦𝑦 bins in the meridional direction. Thus, 

 𝜂𝜂𝑖𝑖 = 𝛬𝛬𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖; 𝜃𝜃) = 𝐼𝐼𝐾𝐾𝐾𝐾0𝑔𝑔𝐾𝐾𝐾𝐾0(𝑥𝑥𝑖𝑖 − 𝜃𝜃) (30) 

 𝜎𝜎𝑖𝑖2 = 𝜂𝜂𝑖𝑖 (31) 

The probability mass function of an observed knife edge profile bin counts 𝒌𝒌 = �𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑛𝑛𝑥𝑥� is given by: 

 
𝑓𝑓𝑿𝑿|𝛩𝛩(𝒌𝒌) = �𝑓𝑓𝑋𝑋𝑖𝑖|𝛩𝛩(𝑘𝑘𝑖𝑖)

𝑛𝑛𝑥𝑥

𝑖𝑖=1

 (32) 

where 𝑛𝑛𝑥𝑥 = 𝑊𝑊𝑥𝑥/∆𝑥𝑥 is the number of bins in the zonal direction. See Section 8-4, A. of Ref. [20]. The minimum 
MSE knife edge estimate is given by the mean of the a posteriori density: 
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𝜃𝜃�𝑚𝑚𝑚𝑚 = � 𝜃𝜃

∞

−∞
𝑝𝑝𝛩𝛩|𝑿𝑿(𝜃𝜃|𝒙𝒙)𝑑𝑑𝑑𝑑 (33) 

To find 𝑝𝑝𝛩𝛩|𝑿𝑿(𝜃𝜃|𝒙𝒙), use 

 
𝑝𝑝𝛩𝛩|𝑿𝑿(𝜃𝜃|𝒙𝒙) =

𝑝𝑝𝑿𝑿|𝛩𝛩(𝒙𝒙|𝜃𝜃)𝑝𝑝𝛩𝛩(𝜃𝜃)
𝑝𝑝𝑿𝑿(𝒙𝒙)  (34) 

taking logarithms and neglecting 𝑝𝑝𝑿𝑿(𝒙𝒙), 

 𝑙𝑙(𝜃𝜃) ≜ ln𝑝𝑝𝑿𝑿|𝛩𝛩(𝒙𝒙|𝜃𝜃) + ln𝑝𝑝𝛩𝛩(𝜃𝜃) (35) 

The MAP estimate 𝜃𝜃�(𝑿𝑿) is found by maximizing the above equation. For the case in which 𝜃𝜃 is uniformly 
distributed, the value of 𝜃𝜃 which maximalizes it is that which minimizes the inner term in the multivariate Gaussian 
distribution: 

 𝜃𝜃� = arg min
𝜃𝜃

�𝒈𝒈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒈𝒈𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥 − 𝜃𝜃)�
𝑇𝑇
Σ−1 �𝒈𝒈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒈𝒈𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥 − 𝜃𝜃)� (36) 

where 𝒈𝒈𝑟𝑟𝑟𝑟𝑟𝑟  is the reference Fresnel profile, shifted by 𝜃𝜃. Both functions are normalized to one in the illuminated 
region for better stability in the computations. An alternative would be to scale 𝒈𝒈𝑟𝑟𝑟𝑟𝑟𝑟  so that it matches the value of 
𝒈𝒈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in the illuminated region. The choice of Σ is important as the Gaussian approximation to the Poisson noise 
discussed earlier is signal-dependent. Ideally, it should be chosen with diagonal values proportional to 𝒈𝒈𝑟𝑟𝑟𝑟𝑟𝑟 . For 
simplicity and to avoid ill-conditioning in the dimly lit region, Σ was chosen to be the identity matrix. The 
alternative was examined, but the dark region to the left produced very large values in the inverse and destabilized 
the solution in the photon scarce regime. Additionally, a stray background photon can be unduly amplified in 
importance and disrupt the solution. The minimization approach taken in the work was to perform a global 
optimization (a brute force grid search) across a range of values of 𝜃𝜃 to locate the maximum of Eq. (36).  

4 Shadow Imaging Simulation Methodology 

The studies discussed herein rely on Monte Carlo methods utilizing high quality forward imaging simulation as a basis 
for information computations. In simulation, one has the advantage of being able to separate the signal and noise, 
which is helpful for computations based on the Fellget and Linfoot equation. For TSI studies, one can know a priori 
the entropy of the virtual source used to generate scenes, and therefore possess an upper bound on the information in 
the output of the system. 

The shadow simulation is performed using a radiometrically based numerical wave optics propagation which generates 
the truth shadows as described in [9]. The light collection and measurement processes are then modeled in the 
simulation to yield the measurement inferred shadows. The measurement inferred shadows are then used in a 
reconstruction process. The overall process is described in the following paragraphs. 

4.1 Shadow Generation 

Monochromatic irradiance patterns are generated over a wavelength range 𝜆𝜆𝑎𝑎 → 𝜆𝜆𝑏𝑏. Each pattern results from a multi-
step wave optics propagation from the satellite plane to the observation plane. The following sequential steps are used 
to create each pattern: 

1. Generate exoatmospheric complex electric field emerging from satellite plane based on source star brightness 
𝑚𝑚𝑣𝑣 and angular extent 𝛼𝛼, and the satellite's transmission function. 

2. Propagate the electric field from satellite to top of atmosphere. 
3. If incorporating atmospheric turbulence effects, generate altitude dependent random phase screens based on 

𝐶𝐶𝑛𝑛2 profile and apply to the electric field as it propagates through the atmosphere to the ground. 
4. Convert the electric field on ground to irradiance. 
5. Multiply the irradiance by atmospheric transmission factor. 
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6. Shift the irradiance pattern based on refraction per look angle relative to zenith. 

4.2 Spectral Binning 

The monochromatic shadow patterns are summed within each spectral bin to produce a set of polychromatic shadow 
patterns. 

4.3 Sampling of the Patterns 

The propagation through the vacuum and atmospheric regions are each performed using multiple steps by maintaining 
that Δ < 𝜆𝜆𝜆𝜆

𝐿𝐿
, where Δ is the grid spacing in the propagation plane, 𝑧𝑧 is the propagation distance, and 𝐿𝐿 is the support 

length extent. The propagation plane parameters were chosen to be Δ = 0.1 m, 𝐿𝐿 = 100 m, and 𝑀𝑀 = 1000, where 𝑀𝑀 
is the number of grid points, to avoid sampling issues over a 400 to 900 nm wavelength range. 

4.4 Measurement Inferred Shadow 

The measurement inferred shadows are generated from the pristine shadow patterns, along with the light collection 
system and detector parameters. Each aperture in the linear collection array has a diameter 𝐷𝐷. Thus, the light collection 
process requires the pristine pattern (𝑀𝑀 × 𝑀𝑀 in size) to be downsampled to 𝑀𝑀𝑎𝑎𝑎𝑎 × 𝑀𝑀𝑎𝑎𝑎𝑎, where 𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑀𝑀

𝐷𝐷
 , while 

maintaining radiometric accuracy. The following steps describe the simulation process:  

1. Calculate the signal and sky background photon rate patterns based on 𝐷𝐷, the optical throughput, the field of 
view, and the sky background brightness. 

2. The signal and background photon rates are then fed into a detector model which yields a stochastic 
realization of the measured polychromatic photon rate patterns which includes sensor noise. 

3. The 𝑀𝑀𝑎𝑎𝑎𝑎 × 𝑀𝑀𝑎𝑎𝑎𝑎 irradiance patterns are calculated then interpolated back to the final 𝑀𝑀 × 𝑀𝑀 measurement 
inferred patterns. 

4.5 Image Reconstruction 

In [9], a Fresnel integral version of the iterative Gerchberg-Saxton phase retrieval algorithm was proposed for image 
reconstruction on each simulation case to produce a silhouette reconstruction [7]. This is required under most 
circumstances to support the analysis of satellite visible features by an image analyst. However, such post-processing 
does not add information in the Shannon sense. Thus, the irradiance patterns are used directly in this work rather than 
the reconstructions. It is worth noting that in prior work visual estimates of the optical resolution were made using the 
reconstructed silhouettes.  

4.6 Monte Carlo Method 

Figure 3 shows the overall method used in the TSI Monte Carlo study. For a given source visual magnitude, the 
inner simulation loop was executed 100 times to provide statistics for the accuracy of the knife edge position 
estimates.  
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Figure 3. An overview of the Monte Carlo process for the TSI studies of knife edge localization. 

5 Results and Discussion 

A set of simulations were run and served as the basis for information experiments. A variety of cases are examined 
for the power-spectrum-based information calculations, including revisiting some earlier visual estimates of 
resolution using a test pattern with features of varying size. For the TSI study, a knife edge aperture function 
comprising a vertically oriented step function, with values of zero at left, and ones at right, was used as the 
transmission function. This plane was assumed to extend to infinity in all directions. Parameters for these studies are 
listed in the applicable table below. 

5.1 Scene-Based Information Content 

In this section, the Fellget and Linfoot power spectrum-based metric is used to explore the relationship between 
visually estimated resolution and information content. We revisit some of the earlier published results which were 
based on visual estimates of the smallest resolvable detail in silhouette images produced by the Gerchberg-Saxton 
algorithm mentioned above [9]. This is an empirical study using the shadow imaging wave propagation code.  

Revisiting prior work using knife edge test patterns and estimation theory [12], results confirm the multispectral gain 
in terms of information. The results also indicate the presence of an information upper bound.  

5.1.1 Simulation parameters  

The simulation parameters used in this study are shown in Table 1 and are as similar as possible to those used in [9] 
for the visual estimation of resolvable detail in the silhouette images. The test pattern used is shown in Figure 4.  
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Table 1. Simulation parameters for scene-based results. 

Propagation Parameters Measurement Parameters 
Sampling Value Light Collection Value 
support length 𝐿𝐿 100 m aperture size 𝐷𝐷𝑎𝑎𝑎𝑎 0.2, 0.4, 0.8 m 
grid spacing Δ 0.1m field of view 𝜃𝜃𝑎𝑎 1 arc sec 
grid samples 𝑀𝑀 1000 Spectral Value 
Object Value beginning 𝜆𝜆𝑎𝑎 400 
satellite model barSat2 ending 𝜆𝜆𝑏𝑏 900 
Source Star Value width of Λ𝑗𝑗  5, 10, 25, 50, 100 nm 
magnitude 𝑚𝑚𝑣𝑣 6 - 12 number of bins 𝐽𝐽 100, 50, 20, 10, 5 
angular extent 𝛼𝛼 0 nrad Detector Value 
Environmental Value exposure time 𝑡𝑡 77, 154, 308 𝜇𝜇𝜇𝜇 
turbulence Off dark count rate 𝑁𝑁𝐷𝐷 0 Hz 
sky brightness 𝑚𝑚𝐵𝐵 20 𝑚𝑚𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  detection efficiency 𝑃𝑃𝑑𝑑 1 
Observational Value after-pulsing 𝑃𝑃𝑎𝑎𝑎𝑎 0 
off-zenith 𝜃𝜃𝑣𝑣 0 deg gate time 𝑡𝑡𝑔𝑔 0.1 𝜇𝜇𝜇𝜇 
latitude 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙  0 deg duty cycle 𝑐𝑐𝑑𝑑 1 
longitude 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 deg   
altitude ℎ 0 m   

 

 

Figure 4. The barSat2 transmission function. Dark areas are opaque and represent features in the 1 – 5 m, and 1 m range. 

5.1.2 Spatial Resolution (Aperture Size vs. Bin Width) 

This study looks at the influence of aperture diameter and spectral bin width on system resolution. Aperture sizes of 
0.2, 0.4, and 0.8 meters were used. Spectral bin widths of 5, 10, 25, 50, 100 nm were included. All combinations of 
these two parameters were examined. 

Table 2 is a depiction of one of the main results presented in [9], where the smallest resolvable detail in the barSat2 
test pattern was visually estimated. The estimates were performed using the reconstructed silhouettes produced by 
the Fresnel-modified Gerchberg-Saxton algorithm. Note that the test pattern does not contain features of size 0.6 – 
0.9 meters, so estimates in this range were not possible.  

Table 3 shows the results of computing the power spectrum-based information content in the measurement inferred 
ground irradiance patterns. The processing to produce a silhouette image from the patterns would not add 
information in the theoretical sense, so the silhouette images were not used here. 



Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2024-1862. 

Table 2. Visual estimates of smallest resolvable detail in the silhouette images as a function of aperture size and spectral bin 
width.  Star brightness is mV=6. 

Limits to Resolution Deduced from Reconstructed Images  
 

∆𝝀𝝀 = 𝟓𝟓 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟐𝟐𝟐𝟐 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟓𝟓𝟓𝟓 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 

𝐷𝐷𝑎𝑎 = 0.2 𝑚𝑚 0.2 m 0.3 m 0.4 m 0.5 m 1.0 m 

𝐷𝐷𝑎𝑎 = 0.4 𝑚𝑚 0.3 m 0.3 m 0.4 m 0.5 m 1.0 m 

𝐷𝐷𝑎𝑎 = 0.8 𝑚𝑚 0.5 m 0.5 m 1.0 m 1.0 m 1.0 m 

Table 3. Mean spectral bin information (bits) as a function of aperture size and spectral bin width.  Star brightness is mV=6. 

Mean Spectral Bin Information Capacity for Varying Aperture Size and Spectral Width 
 

∆𝝀𝝀 = 𝟓𝟓 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟐𝟐𝟐𝟐 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟓𝟓𝟓𝟓 𝒏𝒏𝒏𝒏 ∆𝝀𝝀 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 

𝐷𝐷𝑎𝑎 = 0.2 𝑚𝑚 66512.765 43172.391 22444.090 13149.343 7353.983 

𝐷𝐷𝑎𝑎 = 0.4 𝑚𝑚 30880.315 18076.962 8341.942 4387.670 2097.559 

𝐷𝐷𝑎𝑎 = 0.8 𝑚𝑚 11786.258 6258.788 2407.772 930.429 172.265 

The loss of information capacity is quite apparent when moving away from the upper left corner. In Figure 5, the 
information content is plotted against the visually estimated resolution. The visual estimates appear well correlated 
with information capacity plotted on a log scale. Visual assessments of 0.6 – 0.9 m features were not made as they 
were not present in the original test pattern. As a result, the 1 m resolution bin captures the resolutions that are not 0.5 
m or less. This is likely the cause of the spread in the estimates at 1 m resolution.  

 
Figure 5. Information vs. Visually Estimated Resolution. 
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5.1.3 Varying Source Visual Magnitude 

Figure 6 shows the results for fixing the aperture size and varying the stellar source magnitude. The internal 
consistency of the information capacity calculation is evident as is the multispectral gain in information density from 
using smaller spectral bins. It should be noted that this result is for 𝐷𝐷𝑎𝑎𝑎𝑎 = 0.4 m, with other simulation parameters 
as shown in Table 1. 

 
Figure 6. Information Capacity Versus Source Magnitude for the barSat2 aperture. 

 

Figure 7. Multi-spectral bin information density versus source visual magnitude. 
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5.1.4 Knife Edge Aperture Function and Source Visual Magnitude 

In this case, information capacity was calculated from the signal and noise functions in the knife edge diffraction 
pattern, with the multispectral gain evident again in Figure 7. The curves appear to be approaching an upper bound, 
likely due to photon scarcity and the absence of dark current noise, i.e., for a vanishing signal-to-noise ratio. 
Simulation parameters were chosen to match [12] as closely as possible and are shown in Table 4. 

5.2 Task-Specific Information Content 

5.2.1 Overview 

The relationship between mutual information and minimum mean-squared error is explored here to understand the 
limits of resolution of a shadow imaging system. The ability to locate the position of a knife edge profile serves to 
estimate the resolution. Empirical results using the wave propagation software and Monte Carlo studies are 
presented in the following sections. 

5.2.2 Simulation Parameters 

The simulation parameters are summarized in Table 4. The transmission function is a simple step function located at 
the mid-point of the object plane. The resulting diffraction pattern resulting from placing the transmission function 
at GEO distance in a vertical orientation is shown in Figure 8. This is a horizontal slice through the pattern after 
normalization of the illuminated region to one. A collection aperture size of 𝐷𝐷𝑎𝑎𝑎𝑎 = 0.5 m was used along with quasi-
monochromatic spectral bin widths of 1 nm to follow the approach taken in [12] as closely as possible. However, 
this study utilized circular apertures rather than square ones. 

Table 4. Simulation parameters for TSI study. 

Propagation Parameters Measurement Parameters 
Sampling Value Light Collection Value 
support length 𝐿𝐿 100 m aperture size 𝐷𝐷𝑎𝑎𝑎𝑎 0.5 m 
grid spacing Δ 0.1m field of view 𝜃𝜃𝑎𝑎 1 arc sec 
grid samples 𝑀𝑀 1000 Spectral Value 
Object Value beginning 𝜆𝜆𝑎𝑎 550 
satellite model vertical_500 ending 𝜆𝜆𝑏𝑏 551 
Source Star Value width of Λ𝑗𝑗  1 
magnitude 𝑚𝑚𝑣𝑣 6 - 15 number of bins 𝐽𝐽 1 
angular extent 𝛼𝛼 0 nrad Detector Value 
Environmental Value exposure time 𝑡𝑡 7.6828e-05 𝑠𝑠 
turbulence Off dark count rate 𝑁𝑁𝐷𝐷 0 Hz 
sky brightness 𝑚𝑚𝐵𝐵 20 𝑚𝑚𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠2⁄  detection efficiency 𝑃𝑃𝑑𝑑 0.3 
Observational Value after-pulsing 𝑃𝑃𝑎𝑎𝑎𝑎 0 
off-zenith 𝜃𝜃𝑣𝑣 0 deg gate time 𝑡𝑡𝑔𝑔 0.1 𝜇𝜇𝜇𝜇 
latitude 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙  0 deg duty cycle 𝑐𝑐𝑑𝑑 0.95 
longitude 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 deg   
altitude ℎ 0 m   
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Figure 8. One-dimensional horizontal slice through the knife edge diffraction pattern profile produced by a step function aperture 

at GEO distance. Illuminated region normalized to a mean value of one. 

 Other notable experimental parameters are: 

• For each stellar source visual magnitude, 100 random trials were conducted. 
• Source magnitudes ranged from 6 – 12 in 0.1 magnitude increments. 
• The random knife edge profile positions were drawn with replacement from the interval [-50, 50] pixels, 

corresponding to an interval of 10 m in 0.1 m steps. 
• The TSI is limited to an upper bound of log2(101) = 6.6582 bits by design. 

Note that the source visual magnitude here acts as a stand-in for the parameter 𝑠𝑠 in the TSI discussion earlier. One 
could relate the mean signal-to-noise ratio in the measurement inferred diffraction patterns in the illuminated region 
to this parameter, but we have omitted this detail. 

5.2.3 TSI for Knife Edge Localization Task Result 

Figure 9 shows the result from the Monte Carlo study. The TSI values are the result of summing minimum mean-
squared error to a point along the source visual magnitude axis as in Eq. (15). The summation is from the right to be 
in the direction of increasing SNR. The TSI is co-plotted with the RMSE rather than the MMSE (on a log scale) to 
support comparison with the results in [12]. By design, the TSI for this problem is limited to log2(101) = 6.6582 bits. 
The TSI curve saturates at a significantly lower value, however. This phenomenon was also seen in the results 
presented in [15] for the projective imaging system. There are several possible contributing factors here which could 
introduce information losses: 

• Free space propagation and diffraction imposes a loss of information. 
• The calculation might benefit from extension to even fainter sources. 
• The GMAPD detector model was used which includes the effect of gating and may lower signal-to-noise. 
• A sky background source was included, which although faint, may contribute to loss of signal-to-noise. 
• The asymptotic behavior of Poisson noise with vanishing SNR may be different than that of AWGN. 
• There is no dark current “floor” in this study as signal strength fades. 

Additional investigation is needed, although this initial result appears to be promising. 
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Figure 9. RMSE and TSI versus source visual magnitude.  

6 Summary 

In this work, both scene-based information and task specific information were investigated. This initial investigation 
of shadow imaging performance as a function of Shannon information has resulted in the following insights: 

• The visual resolution assessments in [9] were revisited using the power spectrum-based information 
computational approach which demonstrated a reasonable correlation between the visual assessments and 
measured information content. 

• The knife edge diffraction pattern information content was similarly investigated, corroborating the 
observed multi-spectral gain reported in [12], but in terms of information content. 

• It has been shown that the knife edge localization problem can be approached using task specific 
information (TSI). 

• Further study is needed to fully understand why the TSI saturates at a value lower than the upper bound, 
and to quantify the influence of the various contributing factors discussed above. 

We anticipate future work in the following areas: 

• Relating the observed upper bounds on information for the power spectrum-based information metric more 
closely with the bounds examined in [12]. 

• Consider Guo’s Poisson channel result for applicability and tractability regarding TSI [17]. 
• Explore other tasks for use with TSI which are of value in SDA, e.g., closely spaced object detection. 
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