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ABSTRACT 
Rotor dynamics modelling can be used to predict vibration levels 

for given inputs, such as unbalance levels and location, which 

may be of interest for condition monitoring or diagnosis. 

However, given measured vibration, using rotor dynamics 

models to find the corresponding root cause inputs is not 

straightforward. 

 

In the method presented in this paper, Gaussian Process models 

are developed as surrogates for the rotor dynamics finite element 

models, and are used with Bayesian Inference to determine the 

probability distributions of model inputs for a given vibration 

response. This method allows parameters describing the 

machine condition, such as unbalance location and magnitude, 

and bearing clearances, to be determined as well as the 

confidence in these predictions.  

 

The method is demonstrated by simulating the vibration response 

of a compressor rotor, adding noise to it, and then using the 

technique to accurately infer useful information such as the 

unbalance magnitude and location, and the clearance in each 

bearing. 

 

This technique can be applied as a risk-based approach to 

condition monitoring of rotating machinery. Further 

development of this approach as part of a digital twin which uses 

in-service measurements would provide operators with insight 

into the likelihood of different root causes of vibration, and the 

corresponding machine condition.  

 

1 NOMENCLATURE 

1X Vibration response filtered to a multiple of 1x the 

running speed 

𝑥𝑖 The ith parameter point at which an amplitude 

response is recorded 

𝑑(𝑥𝑖 , 𝑥𝑗) The Euclidean distance between two parameter 

points 𝑥𝑖 and 𝑥𝑗 

𝑙 Kernel length scale for the Gaussian Process  

𝜎 Kernel scale factor for the Gaussian Process 

𝑘 Kernel function used in the Gaussian Process 

𝑐 Vector describing the machine condition – the 

unbalance magnitude and location, and journal 

bearing clearance parameters to be estimated 

𝑀 Vector of measured amplitudes for varying speed 

𝑛 The number of measurements taken, which is 

twice the number of discrete speed points at 

which measurements are taken and GP predictions 

are made in the run down, as there are two 

proximity probes 

𝑟 The vector of residuals – the error between the 

measurement amplitude predicted by the GP, and 

the true measured amplitude 

Σ𝑀 The 𝑛 × 𝑛 covariance matrix of assumed 

measurement noise 

GP Gaussian Process 

MCMC Markov Chain Monte Carlo 

2 INTRODUCTION 

2.1 Physics-based methods for rotating machinery 

Rotor dynamics models are commonly used in the rotating 

machinery sector to predict vibration levels of rotating 

machinery [1], ensure they operate away from critical speeds, 

and confirm they do not suffer from other related issues such as 

instability. These models are often built using simple finite 

element beam representations of the rotor geometry, with spring-

dampers representing the bearings. They are typically run with 

given out-of-balance sets across the speed range of the machine, 

to predict the vibration response as a function of speed. They are 

generally built and used either at the design stage of the 

machinery, to ensure that the machine operates free from 

vibration problems, or as a tool to help diagnose issues where 

this has not been adequately carried out at the design stage. In 

this instance, the models are often verified by manually cross-

checking the vibration response with the measured data.  

 

However, their use for interpreting measured vibration responses 

is limited, because they take inputs which correspond to the 

conditions of interest (such as unbalance magnitude or location, 

bearing clearance etc) and use these to predict outputs which 

correspond to the measured vibration. Therefore, to fully make 

use of them in combination with the measured vibration data, we 

are required to solve the inverse problem – that is, which 
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combinations of model inputs best explains the measured data? 

This is a problem which also manifests itself in many other areas 

of rotating machinery, for example when interpreting blade tip 

timing results.  

 

Therefore, despite their utility in predicting vibration response 

for a given machine condition, the use of such models in a 

condition monitoring context, for example as part of a ‘digital 

twin’, is currently limited. Physics-based methods suitable for 

on-line condition monitoring of rotating machinery, at least for 

interpreting vibration data, are therefore not currently widely 

used. This paper addresses the inverse problem applied to 

vibration diagnostics. 

 

2.2 Current condition monitoring methods for 

rotating machinery 

Vibration measurements, whether taken using proximity probes 

or accelerometers, are commonly used to give an indication of 

the condition of rotating machinery [2]. However, automatically 

determining the root cause of increased vibration is a more 

difficult proposition, and interpreting this in terms of risk is 

harder still. Two main approaches are used to interpret vibration 

data – one which uses limits and trending [3], and the other 

Artificial-Intelligence (AI) based [2]. 

 

2.2.1 Limit-based methods 

Trending or limit-based approaches to condition monitoring 

assign limits to vibration levels [3], and look at trends through 

time. This technique is commonly used in industry, with alarm 

limits set on the vibration recorded in machines. However, they 

do not always use or provide information about the root cause – 

such as whether the increase in vibration is caused by unbalance 

(where this unbalance is located and what may be the cause), or 

by bearing issues such as increased clearance due to wear. They 

also do not provide information about the risks that are brought 

about by the change in machine condition, such as wear or 

instability.  

2.2.2 Artificial-Intelligence methods 

Another approach in increasing use is AI-based approaches, 

which use machine learning techniques such as neural networks, 

as in references [2], [4] and [5] to spot and diagnose potential 

faults based on the vibration data. This is the current state of the 

art for automatically interpreting condition monitoring data for 

rotating machinery.  

 

Some examples of these approaches include Principal 

Component Analysis, Support Vector Machines and Artificial 

Neural Networks, as in references [4] and [6]. These methods are 

useful techniques for classifying faults into different categories, 

thereby diagnosing the potential issues behind the data received.  

 

However, these machine learning techniques suffer from two 

main limitations: 

 

1. They often rely on extensive training data. This data may 

not always be available – for example on rare/unique 

machines, new designs, and/or machines with high 

consequence of failure, it may not be possible to see or 

generate all of the training data required to make accurate 

predictions. Indeed, it may be impossible or unsafe to 

operate in some regimes which the condition monitoring 

system is required to detect and diagnose.  

 

2. They have no built-in knowledge of the physics in the 

system. This has two further implications: 

 

a. It is difficult to understand how reliable the predictions 

made by the system are, particularly if the machine is 

operating in a regime not seen in the training data, as may 

be the case during a fault 

b. Significant training time and data is required to ‘learn’ 

physics that is in fact well understood, leading to a lost 

opportunity to understand more fully what is being seen. 

2.2.3 Other methods for detecting out of balance 

A number of alternative techniques have been developed in an 

effort to detect the magnitude and location of unbalance in 

rotating machinery. Reference [7] describes a method to estimate 

unbalance and misalignment of a machine from a single run 

down, by constructing matrices that represent the rotor-bearing 

system including its misalignment and solving the resulting 

equations to minimise the least-squares error across a range of 

frequencies. This provides a point estimate of the parameters of 

interest – namely the unbalance location, magnitude and rotor 

misalignment.  

 

Reference [8] provides an alternative method which works at 

steady state, by estimating the location and magnitude of 

unbalance and rotor misalignment based on a residual force 

generation technique. Reference [9] gives a recent method to 

estimate unbalance location and magnitude which eliminates the 

use of modal expansion and is not based on calculating residual 

forces. It uses a Finite Element simulation model to generate a 

set of reference cases, and compares the predicted response 

amplitudes (displacements) at the measurement locations with 

the measured values to estimate first the unbalance location and 

then the magnitude.  

 

These methods provide a variety of means of deterministically 

estimating the unbalance magnitude and location, typically using 

a least-squares minimisation approach. However, being point 

estimates, they do not offer the advantages of a probabilistic 

approach in directly estimating the confidence in their 

predictions. 
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2.2.4 Stochastic methods 

Stochastic methods are not often applied in the field of rotor 

dynamics, but there are some recent developments. In 2015, 

reference [10] used Bayesian inference to identify unbalance 

magnitude and location, and reference [11] also used Bayesian 

inference to estimate journal bearing parameter uncertainty and 

proposed its use as part of a design process. Markov Chain 

Monte Carlo (MCMC) was used to perform the Bayesian 

Inference. MCMC returns a posterior probability distribution for 

each parameter of interest, rather than a single value; this is an 

advantage, as this carries information about the degree of 

uncertainty in each parameter being estimated. This is useful in 

a condition monitoring context, where the operator must make 

fundamentally risk-based decisions about how and whether to 

operate the machinery – and therefore an estimate of the 

uncertainty on a given parameter of interest and/or 

corresponding risk will be useful. 

 

More recently, reference [12] has used Polynomial Chaos 

Expansion (PCE) methods to perform the Bayesian inference 

step to identify journal bearing wear and unbalance parameters. 

A similar method is presented in this paper, with a key difference 

being the use of Gaussian Processes in a MCMC to perform the 

Bayesian inference, rather than the PCE methods as in reference 

[12] or directly on the Finite Element model as in references [10] 

and [11]. This gives the opportunity to provide additional 

information about the machine condition, by running the 

complete Markov chain of identified parameters back through a 

Gaussian process to obtain further information about the 

machine condition, such as vibration amplitudes at locations 

other than at the measurement locations.  

 

3 A PHYSICS-BASED METHOD FOR CONDITION 

MONITORING OF ROTATING MACHINERY 

3.1 Method overview 

A method is presented to address the problem of interpreting 

measured vibration data from rotating machinery, by combining 

known techniques from rotor dynamic analysis and statistics, and 

which is made computationally feasible with the use of Gaussian 

process surrogate models. The method makes use of the physics 

inherent in a rotor dynamics model to diagnose the root cause of 

the observed vibration, and the corresponding risks. The method 

combines the physical understanding built into standard rotor 

dynamics finite element models with Bayesian inference, a 

statistical technique to relate the observed outputs to the most 

likely combination of inputs that caused it. The method is shown 

in the diagram in Figure 1, and was implemented using the 

Python programming language. 

  

 

FIGURE 1:  DIAGRAM OF METHOD 

 

As shown in Figure 1, the method proceeds in two stages – Stage 

1, in which the Gaussian processes are fitted to data generated 

by the FE models, and Stage 2, where the parameters of interest 

are inferred. The right-hand side of the figure corresponds to 

parameters which are outputs from a rotor dynamics model, and 

which generally correspond to parameters which may be 

measured, such as the 1X vibration amplitude at proximity probe 

locations. The left-hand side corresponds to parameters which 

may not always be easily measurable, but are of interest for 

condition monitoring, and often are inputs to a rotor dynamics 

model. Examples include unbalance magnitude and location.  

 

In Stage 1, the parameters to be inferred are defined, along with 

the other parameters required to run the rotor dynamics model, 

such as the geometry, speed range etc. The model is then built 

and run for a range of discrete points across combinations of all 

the parameters of interest. This is done in an automated manner, 

and the displacement amplitudes at the proximity probe locations 

are recorded for each parameter combination as a function of 

speed. In addition, if other outputs from the models are of 

interest, such as the corresponding vibration amplitudes at a seal 

or other region of close clearance, these are also stored. Gaussian 

process surrogate models are then fitted to provide a mapping 

between the input parameters and corresponding recorded output 

parameters from the rotor dynamics models. 

 

The Gaussian processes are then used in the Bayesian inference 

step for Stage 2. Gaussian processes are used as they are much 

less computationally expensive to evaluate than the FE model. 

Bayesian inference solves the inverse problem, allowing the 

input parameters which best correspond to the measured 

vibration responses at the proximity probe locations to be 

estimated. 
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Bayesian inference is carried out using a MCMC method to infer 

the posterior distributions of the model inputs of interest, in a 

similar manner to reference [10], but acting on the Gaussian 

Processes rather than the FE model.  

 

The following sections outline the key elements of this method. 

3.2 Rotor dynamics model 

The purpose of the rotor dynamics model is to provide a mapping 

between possible machine conditions and their corresponding 

observed vibration response as a function of speed. This model 

provides the physical understanding inherent in the method, 

giving it accuracy and robustness.  

 

The model itself consists of a finite element model of the rotor-

bearing system. Typically, this would consist of a Timoshenko 

beam element model, with mass and inertia elements, gyroscopic 

effects included, and spring-damper elements representing 

bearings and seals. The bearing elements should include direct 

and cross-coupled terms as required, with the coefficients being 

speed-dependent and calculated as appropriate for the bearing or 

seal in question. This could be using empirical correlations, 

bespoke software or simple fluid dynamics models. In the case 

reported here, the coefficients were calculated using bespoke 

software, and the analysis was run using an ANSYS solver. 

 

The model is solved as for the forced response across a speed 

range for multiple configurations of unbalance magnitude and 

location, bearing clearance and other system parameters as 

required. The vibration response at the proximity probe locations 

(and/or other measurement points) is then recorded. In addition, 

other model outputs of interest are also recorded, such as the 

vibration amplitude at locations where rubs or wear may be an 

issue, or a stability value (from a modal analysis).  

 

The rotor dynamics model is run in this way to simulate a run up 

or run down for different combinations of parameters of interest, 

in a design-of-experiments approach, for a tractable number of 

runs. For the case reported in Section 4, since the vibration 

response scales linearly with the applied unbalance magnitude, 

the corresponding points for varying unbalance magnitude were 

not all generated using the rotor dynamics model, but by scaling 

the response linearly. 

3.3 Gaussian Process surrogate model 

3.3.1 Background to Gaussian Process Surrogates 

The purpose of the Gaussian process surrogate models is to 

enable rapid predictions of vibration response for a given set of 

input parameters, orders of magnitude faster than is possible by 

evaluating the rotor dynamics model directly. This is because the 

Bayesian inference method requires a large number of simulation 

runs, and likely would not be possible to use with the full rotor 

dynamics model for realistic geometry seen in industry, and in 

time-scales relevant to condition monitoring. 

 

Gaussian process surrogate models [13] are a form of surrogate 

model which assume that the outputs at neighbouring points are 

similar and vary with a covariance. By aggregating these points 

and supplying points with known output and output uncertainty 

(which can tend to zero), a mean line can be drawn passing 

through each point supplied in the fitting process (or near in the 

case of non-zero uncertainty in the fitting data). In this way, both 

the mean line and the variance can be computed at all points in 

the input parameter space, with greater certainty (lower variance) 

nearer to the fitting points. 

 

Gaussian process surrogate models are a good choice of 

surrogate model for a variety of reasons. They are very flexible 

for a wide range of response types, they generalise readily to 

multiple input dimensions (they remain fairly computationally 

efficient up to 10 or 20 dimensions, which would likely be an 

upper limit on the number of parameters able to be estimated 

from a few vibration sensors), and their statistical nature is 

appropriate in the probabilistic approach employed in the 

Bayesian inference. This is because when evaluated at a given 

point, they can return both a mean and a variance, and this degree 

of uncertainty can readily be combined with the assumed 

measurement uncertainty in the Bayesian inference step.  

 

3.3.2 Implementation of Gaussian process models 

The Gaussian processes used here each map all of the input 

variables of the rotor dynamics model, including rotor speed, to 

one model output – for example, the magnitude of vibration 

measured at a proximity probe. They are trained using the data 

produced by the rotor dynamics model runs, and Figure 2 shows 

an example output from the Gaussian processes fitted to the rotor 

dynamics model training data, when one parameter is allowed to 

vary and others are kept fixed. 

 

FIGURE 2: EXAMPLE GAUSSIAN PROCESS SURROGATE 

MODEL PREDICTIONS FOR VARYING BEARING CLEARANCE 
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The scikit-learn [14] implementation of a Gaussian process in 

Python was used for this work, with a Radial Basis Function 

kernel (covariance) function. This kernel is shown in Equation 

(1), where 𝑑(𝑥𝑖 , 𝑥𝑗) is the Euclidean distance between two points 

in question, 𝑙 is the length scale of the kernel, and 𝜎 is a scale 

factor. The length scale and scale factors are optimized as part of 

the fitting process of the Gaussian process. 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎2 𝑒𝑥𝑝 (−
𝑑(𝑥𝑖,𝑥𝑗)2

2𝑙2 )            (1) 

 

Using this kernel and the training data points run, the mean 

(expected) value at any point (including points not run to date) 

can be evaluated as outlined in Reference [13] and implemented 

in Reference [14].  

 

In our implementation of the overall method, the input 

parameters were normalized to be between zero and one for 

reasonable magnitudes of the parameters, due to the vastly 

different scales of input parameters – for example, RPM varies 

up to 20,000 rpm, whereas the bearing clearance can be down to 

0.00008 m. These different scales can make fitting and 

optimization difficult, with the potential for numerical errors 

becoming significant for some parameters. Normalizing the 

parameters removes this source of potential error.  

3.4 Bayesian Inference method 

3.4.1 Background to MCMC for Bayesian Inference 

As discussed above, in this condition monitoring application for 

rotating machinery we are attempting to solve an inverse 

problem, that is, which combination of model inputs best 

describes the observed output, to better understand the machine 

condition. There are several ways this could be achieved, 

including posing the problem as an optimization problem and 

attempting to minimize the difference between the observed 

measurements and the measurements ‘predicted’ by the 

surrogate models for a given set of input parameters. This is 

discussed in reference [12].  

 

However, there are advantages to posing the problem in 

probabilistic terms – i.e., given the observed measurements, 

what is the probability distribution of each of the model inputs 

which correspond to the machine condition? This gives the user 

an explicit understanding of the uncertainty around each of the 

parameter predictions, allowing better risk management 

decisions to be made, and allows for cases where different 

scenarios could explain the observed behavior. 

 

𝑃(𝑐 | 𝑀) =  
𝑃(𝑀 | 𝑐) 𝑃(𝑐)

 𝑃(𝑀)
                          (2) 

 

Bayesian inference is a probabilistic approach to solving the 

inverse problem, and Equation (2) shows Bayes formula applied 

to condition monitoring, where 𝑐 is the machine condition and 

𝑀 are the measurements. It shows how to calculate the 

probability distributions of parameters representing the machine 

condition, given the observed measurement. The machine 

condition represents the parameters to be estimated, such as 

unbalance magnitude and location etc., and the measurements 

are the vibration amplitudes across a range of speeds, for 

example taken during a run-down. 

 

The formula shows that the machine condition is a function of 

the probability of observing the given measurements given the 

machine condition parameters, as well as the prior distributions 

on the condition parameters and on the measurements.  

 

However, the equation is difficult to evaluate directly, as the 

normalizing factor 𝑃(𝑀) is difficult to quantify. The Metropolis-

Hastings algorithm, a MCMC method [15], allows the posterior 

distribution 𝑃(𝑐 | 𝑀) to be approximated without knowledge of 

this normalizing factor. The method works by taking a random 

walk through parameter space by proposing random steps 

outwards from the current point, and calculating 𝑃(𝑀 | 𝑐) 𝑃(𝑐), 

which is the likelihood function multiplied by the prior on the 

machine condition. The step is then accepted or rejected 

randomly with a probability proportional to this calculated value 

if the step moves to a less likely point, or accepted if it moves to 

a more likely point. The distribution of steps taken will then tend 

to the posterior distribution to be calculated.  

 

3.4.2 MCMC Implementation details 

 

Due to the small probabilities encountered in the MCMC 

method, the probabilities were handled in log form, in order to 

minimize the effects of numerical error. Therefore, the top line 

of Equation (2) becomes the log likelihood added to the log of 

the prior on machine condition. Since the MCMC method works 

without knowledge of the normalizing factor 𝑃(𝑀), it is only 

required to use a function proportional to the gaussian likelihood 

function. A Gaussian likelihood function was used [16], as 

shown in Equation (3), 

 

log 𝑃(𝑀 | 𝑐) ∝  −
1

2
𝑟𝑇Σ𝑀

−1𝑟                   (3) 

 

 

𝑟 = 𝐺𝑃(𝑐) − 𝑀                              (4) 

 

 

where 𝑟 is the vector of residuals – the error between the 

predicted measurement values (in our case the amplitudes 

predicted by the models at each speed point) for a given 

condition vector, and the true measured values – and is of length 

𝑛, where 𝑛 is the number of measurements. Since we measure 

the amplitude at two proximity probes, 𝑛 is equal to two times 

the number of discrete speed points taken in the run down. Σ𝑀 is 

the 𝑛 × 𝑛 covariance matrix. In this paper, Σ𝑀 was taken to be a 

constant assumed measurement noise multiplied by the Identity 
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matrix. This was chosen as there is no expected variation of noise 

with speed/frequency, either from the proximity probes, or from 

other forcing (aerodynamic or otherwise) in the machine. If 

however, it was known for a given machine that certain 

frequencies contained more noise, this could be incorporated in 

the Σ𝑀 matrix. 

 

Uniform prior distributions were used throughout this work, 

although user experience could be incorporated into the prior 

distribution – for example, if it is known that a particular 

component, such as a disc, is more likely to become unbalanced, 

then this could be captured in the prior distribution. 

 

In our implementation, an adaptive MCMC method [15] was 

used, updating the proposal covariance matrix based on the 

existing knowledge of the posterior distribution from the steps 

taken so far. Python was used to implement this method. The 

precise details of the MCMC steps to accept or reject moves 

through the parameter space are well covered in references [15] 

and [16] and are not discussed here. 

 

The output from the MCMC is a chain of steps through the 

parameter space, the distribution of which tends to the posterior 

distribution of 𝑃(𝑐 | 𝑀), which is the distribution of the machine 

condition, given the observed measurements. In addition, now 

that we have a set of parameters distributed according to their 

posterior distribution, we can run each case back through 

additional GPs, which have been fitted to give further 

information such as the vibration amplitude at other locations of 

interest. The output from these GP(s) will therefore be the 

corresponding distributions of amplitude (or other parameters of 

interest) and be used to calculate the risk of wear occurring at 

locations of close clearance, for example. This additional step is 

enabled by the MCMC chain and the use of GPs, and represents 

a key difference to the work presented in reference [12]. 

4 Application of Method to High Speed 

Compressor 

4.1 Context and Methodology 

This section describes how the method outlined in Section 3 was 

implemented for a simulated six stage high speed compressor, 

and the corresponding results of the study. The compressor 

geometry was chosen to emulate real-world geometry and 

speeds, with the rotor operating above its first critical speed.  

 

The goal of the case study is to estimate the bearing clearance at 

each bearing, and the unbalance magnitude and location, which 

may be located at one of the compressor wheels, and potentially 

due to a blockage in one of the channels. These are chosen as the 

parameters of interest to be inferred from the measured vibration 

response, as well as the risk of wear at the seal location as 

discussed above. We also intend to estimate the amplitude of 

vibration at the seal location, a location of close clearance, in 

order to understand the risk of wear occurring for the given 

machine condition. 

 

In the absence of the means to induce a known out of balance on 

the physical machine, simulated measurement data was 

produced by adding noise and error to results from an FE model.  

 

There are a number of potential sources of error between 

simulated and measured vibration responses. Firstly, there is the 

potential for the model to be incorrectly calibrated, which is 

something that the method presented in this paper is able to 

address, by setting the unknown parameter as a variable to be 

estimated. Second, there is noise in the measurement process and 

other uncertain or unknown forcing occurring in the system. This 

is represented by noise in the measurement data, and was 

simulated by adding randomly distributed noise to results 

produced by the FE model. Thirdly, there is systematic error, 

where the model is not a fully accurate description of the system 

– for example, the model may not have the correct rotor stiffness, 

or may not account for the flexibility in the bearing supports. 

This third case was also simulated, by adding noise to results 

generated from a separate FE model with small changes to its 

stiffness and oil viscosity, so that the model used to produce the 

measured data and the model used for inference are different. 

This is discussed further in Section 4.4. 

 

The method described in Section 3 was then applied, to infer the 

unbalance magnitude and location, the bearing clearances and 

the seal vibration amplitude. Section 0 describes the underlying 

geometry and FE model used in this example, Section 4.3 shows 

the Gaussian Process surrogate models fitted, Section 4.4 shows 

the simulated measurement data produced from which to carry 

out the inference, and Section 4.5 shows the results of the study. 
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4.2 Model set up 

Figure 3 shows the rotor model used in this paper. It consists of 

a high speed six stage compressor, mounted on short journal 

bearings. The rotor is modelled with Timoshenko beam 

elements, and mass/inertia elements are used to represent the 

compressor wheels, as these do not significantly contribute to the 

rotor stiffness. At step changes in the rotor diameter, the stiffness 

radius of the rotor is reduced, with material outboard of this 

radius contributing mass and inertia but not stiffness, as would 

be the case in a 3D rotor model. Proximity probes are located 

near to both bearings. 

 

 
FIGURE 3: ROTOR MODEL IN ROTOR DYNAMICS TOOL, 

WITH PROXIMITY PROBE AND SEAL LOCATIONS SHOWN 
 

The model was built and solved using an ANSYS solver. The 

journal bearing characteristics as a function of speed were 

calculated using the method presented in reference [1]. 

In order to fit the GPs, the model was run for ranges of four 

parameters of interest: unbalance magnitude, unbalance location, 

and bearing clearances at each bearing (which affect the stiffness 

and damping terms of the bearings). The ranges were generated 

using a uniform sampling methodology, with the exception of 

the speed term, where more samples were concentrated at speeds 

near the peaks in response. The models were run as forced 

response models through the running range of the machine – up 

to 20,000 rpm. Results were recorded for all combinations of six 

unbalance locations, three bearing clearance values at bearing 

one and three at bearing two and two unbalance amounts, each 

for a range of 100 speed values. This resulted in 108 parameter 

combinations run, each for 100 speeds. The resulting vibration 

amplitude was recorded at the proximity probe locations as 

functions of speed. The vibration amplitude was also recorded at 

a location corresponding to a seal with known clearance. This 

leads to a total of 10,800 points per GP surrogate model. 

Figure 4 shows an example plot from the rotor dynamics model, 

for a 0.002 kg-m unbalance at located 0.602 m, with 0.115 mm 

bearing clearance at both sides. The figure shows a clear mode 

just below 5,000 rpm, with a split critical due to bearing 

anisotropy, and further modes at 10,000 rpm and 15,000 rpm. It 

also shows significantly higher vibration at some speeds for the 

seal than is seen at the measurement locations, which may not be 

apparent from the proximity probe measurements but would be 

useful for an operator to understand. 

 
 

FIGURE 4: VIBRATION FOR 0.002 KG-M UNBALANCE AT 

0.602M, 0.115MM BEARING CLEARANCE AT BOTH SIDES 

 

4.3 Gaussian process surrogate models 

Gaussian process surrogate models were fitted using the data 

generated by the rotor dynamics model. Three surrogate models 

were generated – two for the vibration amplitude responses at the 

two proximity probe locations, and a further surrogate model for 

the response at the seal location. Each model takes inputs 

corresponding to the rotor speed, unbalance magnitude, 

unbalance location and the clearance at each journal bearing (as 

two separate parameters). The rotor speed is assumed to be 

known, as each vibration measurement will be taken at known 

rotor speeds. The other parameters represent the machine 

condition, which we wish to infer based on the observed 

vibration response. 

 
FIGURE 5: GAUSSIAN PROCESS MODEL COMPARED WITH 

ROTOR DYNAMICS MODEL FOR 0.002 KG-M UNBALANCE AT 

0.602M LOCATION, WITH CLEARANCES FOR 0.115 MM 

AT EACH BEARING 
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FIGURE 6: SURROGATE MODEL FIT FOR 0.002 KG-M 

UNBALANCE, 5198 RPM AND 0.115 MM CLEARANCES 

FIGURE 7: SURROGATE MODEL FIT FOR 0.002 KG-M 

UNBALANCE, 6050 RPM AND 0.115 MM CLEARANCES 

 

Figure 5 to Figure 7 show plots from the surrogate model 

responses at proximity probe two, to illustrate the quality of fit 

of the surrogate model. The models show a good fit to the rotor 

dynamics model data. Figure 7 shows the predicted amplitude as 

a function of unbalance location for a speed which was not run 

in the rotor dynamics model, which therefore shows an increased 

level of uncertainty in its prediction. 

4.4 Simulated Measurement 

In order to simulate vibration responses from the rotor taken in 

the field, noise was added to a set of forced responses generated 

by the rotor dynamics model. This captures the uncertainty 

created by the noise in the measurement process or other noisy 

forcing in the machine. The simulated machine condition is 

shown in Table 1, and is not a parameter set that was used in the 

generation of the points to fit the GPs, requiring the GPs to 

correctly interpolate at this condition.  

 

Two measurement cases were run corresponding to high and low 

noise cases. The high measurement noise case was made by 

adding normally distributed error to the rotor dynamics model 

output, with a standard deviation of 5.0x10-7 m, and the standard 

deviation for the lower noise case was 1.0x10-7 m. Figure 8 and 

Figure 9 show the ‘measured’ noisy vibration response which 

correspond to the simulated machine condition which is to be 

inferred, compared with the underlying data produced by the 

rotor dynamics model before the addition of noise. 

 

Another low noise case was run, where the stiffness of the rotor 

in the model used to generate the simulated measured data was 

increased by 5%, and the oil viscosity increased by 10%. This is 

to represent a case where there is systematic error in the model – 

i.e. the model does not completely match the real machine due 

to some small error or unknown in the modelling. Figure 10 

shows this case. 

 

Table 1 SIMULATED MACHINE CONDITION 

Parameter Value 

Unbalance 

location 
0.602 m (Compressor wheel 2) 

Unbalance 

magnitude 
0.000333 kg-m 

Bearing 1 

clearance 
0.0975 mm 

Bearing 2 

clearance 
0.1325 mm 
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FIGURE 8: HIGH NOISE SIMULATED MEASUREMENT DATA 

COMPARED WITH UNDERLYING DATA FROM MODEL 

 

 

 
FIGURE 9: LOW NOISE SIMULATED MEASUREMENT DATA 

COMPARED WITH UNDERLYING DATA FROM MODEL 

 

FIGURE 10: SIMULATED MEASUREMENT DATA COMPARED 

WITH UNDERLYING DATA FROM MODEL FOR CASE WITH 

SYSTEMATIC ERROR 

 

4.5 Bayesian Inference 

4.5.1 High noise 

For all cases, the MCMC chain was run for a length of 50,000 

samples, with the first 10% removed for the burn-in period. 

Figure 11 to Figure 15 show the results of the MCMC chain for 

the high noise case. Figure 11 to Figure 14 correspond well with 

model inputs, and are shown on with the x axis corresponding to 

the full range of potential values considered, with the exception 

of Figure 11, for which only the first half of the range is shown, 

for clarity. The true value is shown by a green vertical line. 

The figures show that even in the presence of relatively high 

noise, good estimates of the parameters of interest can be 

obtained. The distributions of all uncertain parameters bound the 

true values, and true values of the bearing clearances and 

unbalance location are very near the centre of the distributions 

produced. This indicates that the method should work well in 

practice to infer the true values from measured in-service data. 
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FIGURE 11: POSTERIOR DISTRIBUTON OF OUT OF BALANCE 

MAGNITUDE COMPARED WITH TRUE VALUE 

 

FIGURE 12: POSTERIOR DISTRIBUTON OF OUT OF 

BALANCE LOCATION COMPARED WITH TRUE VALUE 

 

FIGURE 13:  POSTERIOR DISTRIBUTION OF JOURNAL 

BEARING 1 CLEARANCE COMPARED WITH TRUE VALUE 

 

FIGURE 14:  POSTERIOR DISTRIBUTION OF JOURNAL 

BEARING 2 CLEARANCE COMPARED WITH TRUE VALUE 

 

Figure 15 shows the posterior distribution of the vibration 

amplitude at the seal location, which also bounds the true value. 

Just as the posterior distributions of input parameters are found 

by taking the distributions of MCMC sampled points, Figure 15 

is produced by running these distributions of input parameters 

through the GP model for the seal displacement amplitude and 

plotting the corresponding distribution of seal displacement.   

 

For this plot, although the distribution appears wide compared 

with the other figures, it is only due to the scale on the x axis, as 

there is no prior on this value, and all points are within 10% of 

the true value. The width of the distribution is governed 

ultimately by the widths of the distributions of input parameters 

and their corresponding effect on the amplitude at the seal 

clearance location. 

 

FIGURE 15: POSTERIOR DISTRIBUTION OF MAXIMUM  

VIBRATION AMPLITUDE AT SEAL LOCATION  

4.5.2 Low noise 

The results from the low noise case are similar to that reported 

in Section 4.5.1, with distributions that are well centred around 

the true values of the parameters of interest. The distributions 

themselves are slightly tighter compared to the high noise case, 

meaning that there is greater certainty in the predicted value. 
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This is to be expected, as the effects of noise are smaller. Figure 

16 shows an example plot of the distribution of out of balance 

location predicted for the low noise case. 

 

FIGURE 16: POSTERIOR DISTRIBUTON OF OUT OF BALANCE 

LOCATION COMPARED WITH TRUE VALUE 

4.5.3 Systematic model error 

The results from the systematic model error case were very 

similar to the low noise results, and Figure 17 shows an example 

results plot, showing the distribution of out of balance location 

predicted, which compares well with the true value. This shows 

that the method is robust even in the presence of small systematic 

errors in the models used – for example, where the model does 

not fully match the behaviour of the real machine. 

 

FIGURE 17: POSTERIOR DISTRIBUTION OF OUT OF 

BALANCE LOCATION COMPARED WITH TRUE VALUE 

5 DISCUSSION AND EXPLOITATION 

This paper outlines a method to infer useful information about 

the condition of rotating machinery from measured vibration 

data. This includes unbalance magnitude and location, and 

bearing clearances, and the method also gives other useful 

information about risks, such as the probabilities of rubs or wear 

at given locations. The method was shown to work well in the 

simulated example shown, accurately inferring the parameters of 

interest from noisy simulated vibration data, as well as in a case 

where the underlying models had some small systematic error, 

as would likely be the case when modelling real machinery.  

 

This method provides benefits relative to conventional limit and 

trending based approaches to interpreting vibration data, as well 

as non-physics-based methods which rely purely on artificial 

intelligence or data analytics approaches. The benefits are given 

by incorporating knowledge of the underlying physics with the 

rotor dynamics models, allowing more insight to be gained from 

commonly measured data, and allowing more reliable 

interpretation of that data. It also allows information about the 

machine condition to be inferred in the absence of sensor data 

that can measure the condition more directly, perhaps because 

the parameter is difficult to measure, or sensors have not been 

built in to the equipment. This is achieved by using the physics 

to relate what has been measured to the influence of the non-

measured parameter. 

 

The method relies on rotor dynamics models, which can be hard 

to calibrate well with experimental data, due in part to 

uncertainty in some of the key inputs, such as bearing 

characteristics. However, where there is uncertainty in the values 

of these model input parameters, this approach can actually be 

used to mitigate the problem and help calibrate the model, by 

taking these inputs as parameters to be estimated rather than 

setting them as fixed values. This allows the method to be 

employed for calibrating rotor dynamics models in 

circumstances other than condition monitoring, such as for 

vibration problem solving and diagnosis. 

 

The method is also probabilistic in nature, which provides 

operators with insight into the likelihood of different root causes 

of vibration. This provides a benefit to the user, who wants to 

know not just the machine condition but the uncertainty in that 

estimate, in order to make risk-based decisions.  

 

The method could be practically implemented by carrying out 

Stage 1 in Figure 1 prior to use, and setting up the Gaussian 

Processes. Then, whenever the machine is run up or run down, 

the measured vibration response at the proximity probes would 

be filtered to the 1X response, and the MCMC step in Stage 2 

would be run, which is computationally tractable to run each 

time the machine is switched on or off due to the use of GP 

surrogate models rather than the full FE models. This would then 

give the operator probability distributions on clearances in the 

machine, unbalance magnitudes or locations, and these results 

could be tracked each time the process is carried out, allowing 

risks to be understood and managed, and appropriate 

maintenance planned in. 

 

The approach can also be readily applied to other classes of 

problems in rotating machinery (such as blade vibration and 

high-cycle fatigue), or even in entirely separate areas.  This can 

be achieved by changing the rotor dynamics models employed 

here for another physics-based model, which maps inputs of 
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interest to measured outputs. This overall approach is therefore 

not limited to vibration in rotating machinery, and would also 

provide an effective diagnostic and condition monitoring tool in 

other contexts. We foresee the overall approach being applicable 

to owners, operators, maintainers or Original Equipment 

Manufacturers, as a key component of a predictive maintenance 

or digital twin system. 

6 CONCLUSIONS 

We have presented a new approach to interpreting measured 

vibration data, allowing it to give insight into other aspects of the 

condition of the system that are more difficult to measure. This 

is achieved by using physics-based rotor dynamics models, 

Gaussian Process surrogate models, and Bayesian inference, to 

infer the likely distributions of input parameters which result in 

the measured vibration. The method was shown to work well, 

and could readily be adapted to other classes of problem in 

rotating machinery or in other fields, as an effective condition 

monitoring or digital twin system.  
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