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Abstract— Attempts to use synthetic data to augment 
measured data for improved synthetic aperture radar (SAR) 
automatic target recognition (ATR) performance have been 
hampered by domain mismatch between datasets. Past work 
which leveraged synthetic data in a transfer learning framework 
has been successful but was primarily focused on transferring 
generic SAR features. Recently SAMPLE, a paired synthetic and 
measured dataset was introduced to the SAR community, enabling 
demonstration of good ATR performance using 100% synthetic 
data. In this work, we examine how to leverage synthetic data and 
measured data to boost ATR using transfer learning. The 

synthetic dataset corresponds to the MSTAR 𝟏𝟓∘  dataset. We 
demonstrate that high quality synthetic data can enhance ATR 
performance even when substantial measured data is available, 
and that synthetic data can reduce measured data requirements 
by over 50% while maintaining classification accuracy.  

Index Terms—transfer learning, synthetic aperture radar, 
automatic target recognition, MSTAR dataset, SAMPLE dataset, 
deep learning. 

I. INTRODUCTION 

 Synthetic aperture radar (SAR) automatic target recognition 
(ATR) is often limited by the availability of labeled measured 
data. Off-the-shelf networks trained on measured electro-optical 
(EO) imagery fail to generalize straightforwardly to SAR due to 
the significant differences in imaging characteristics between 
domains, with SAR imagery having significantly higher sparsity 
and dynamic range. An alternative data source supplementing 
measured data is synthetically generated data. Synthetic data is 
attractive since SAR data is expensive to collect, and the 
significant performance gains allowed by ATR based on 
convolutional neural networks (CNN) require large training 
datasets [1].  

 Early SAR transfer learning (TL) experiments leveraged 
unlabeled data to improve ATR performance [2]. Later work 
demonstrated performance improvements combining synthetic 
data with the same classes as the measured data, but training 
with synthetic data alone yielded poor performance [3]. The 
SAMPLE dataset made high quality paired synthetic and 
measured data available [4], which enabled very good (>90%) 

ATR performance using 100% synthetic data [5]. This excellent 
performance on purely synthetic data motivates the present 
work, which investigates how transfer learning can be used to 
further improve SAR ATR performance when the simulated 
data fidelity is high. Prior transfer learning experiments used 
well matched classes of MSTAR targets [6] and SAMPLE 
targets [7], but did not demonstrate the effectiveness of transfer 
learning as a function of the quantity of measured data, or 
perform studies as to when transfer learning on these SAR 
datasets is most effective. In this work we demonstrate 
substantial performance gains of >10% absolute performance 
improvement when 10% of measured MSTAR data is available 
for training, using a synthetic dataset created to correspond to 
MSTAR. For comparison, we examine experiments where the 
synthetic dataset is not well-matched to the validation set, and 
while we still observe performance improvements when 
transferring to limited measured data, they are less substantial 
than the well-matched synthetic data case, suggesting class 
specific features can be successfully transferred. 

 This paper is organized as follows. First, Section II describes 
the experiments performed in this study. Section III describes 
the effect of freezing layers in a transfer learning experiment. In 
Section IV, we provide experiment results comparing 
classification performance of TL against the performance with a 
single training stage. Finally, Section V provides conclusions 
from this effort.  

II. SAR ATR EXPERIMENT APPROACH 

A. ATR Framework 

 Our experiments use a  SAR ATR test harness to evaluate 
ATR algorithms and transfer learning capabilities. The harness 
includes implementations of more than a dozen deep learning 
models from the literature (including AConvNets, DenseNet, 
ResNet, Inception, EfficientNet and their variants) [8]. Multiple 
data preprocessing approaches (such as scaling, quantization, 
and clipping) and data augmentation strategies are also 
available. The testbed interfaces with several standard and user-
defined datasets, including the MSTAR [9] and SAMPLE [4] 
datasets. The testbed is configurable to allow any network 
architecture to be trained with any dataset using any 
combination of preprocessing and augmentation methods and This material is based upon work supported by the Air Force Research 
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validated against any other dataset. We have used this test setup 
to systematically evaluate the impact of each portion of the ATR 
algorithm on classification performance.  

 We have found that SAR ATR performs well with the 
following settings which we use to obtain the results presented 
in this paper: 

• Data preprocessing: Select the top 𝑁 = 500 pixels in 
magnitude to form the image and normalize by the 
maximum value.  

• Data augmentation: A random image shift in each pixel 
dimension is applied to each image during training. 
This provides resilience to targets being off-center in 
the image. 

• Deep learning network: Network architecture is user 
defined. We used the AConvNets and DenseNet 
architectures in this paper. 

• Loss function: cross entropy loss. 

 Classification performance is measured as the probability of 
correct classification (PCC) of validation dataset samples, which 
is a number between 0 (completely incorrect classification) and 
1 (correct classification for all samples). Typically, we run 
multiple trials for each experiment to provide results showing 
average performance, reducing variation due to independently 
trained networks and the randomly chosen samples when sub 
setting the target stage training dataset. Classification 
performance for each experiment is typically reported as the 
average and standard deviation of the PCC for the last 10 epochs 
of 10 trials (100 performance results). 

B. SAR Image Datasets 

  Our work uses the publicly available MSTAR [9] and 
SAMPLE [4] datasets. The MSTAR dataset contains 10 target 
classes (2S1, BMP-2, BRDM-2, BTR-60, BTR-70, T-62, T-72, 
Caterpillar D7, and a ZSU 23/4), and the SAMPLE dataset also 
contains 10 target classes (2S1, BMP-2, M548, M1, BTR-70, T-
72, M2, M35, M60, ZSU 23/4). Five target classes are present 
in each dataset and the remaining five classes are unique to each 
dataset. The two datasets are obtained from the same data 
collection, with some chips of the shared 5 classes identically 
present in both the MSTAR and SAMPLE datasets. Error! 
Reference source not found. plots the azimuth and elevation 
imaging angles for each dataset, allowing the identical chips to 
be identified. 

 The MSTAR dataset is typically binned into images formed 
at two different elevation angles. The MSTAR datasets are 
termed MSTAR17 for the data measured at elevation angles near 
17 degrees, and MSTAR15 for data measured near 15 degrees.  

 Error! Reference source not found. shows there are 
various amounts of overlapping chips between MSTAR and 
SAMPLE. The SAMPLE dataset provides unique chips at 
elevation angles near 16 degrees but contains a mixture of 
identical and unique chips at elevation angles near 17 degrees 
depending on the class. Two target classes also contained chips 
at elevation angles near 15 degrees. In the following 
experiments we removed all chips from the SAMPLE set that 
were members of the MSTAR15 set. This allows us to use 
MSTAR15 for validation since the network will not be trained 
on these chips. The angular diversity of these publicly available 

SAR datasets allows evaluation of transfer learning utility to 
ATR performance improvement.  

 Synthetic data was generated using asymptotic ray-tracing 
techniques from 3D CAD models of the MSTAR targets. The 
data was simulated at X-band, with bandwidth and aperture 
chosen to achieve 1 foot resolution. The image chips were then 
formed by backprojection of the synthetic data at 1 degree 
increments in azimuth at 15 degrees elevation for each of the 10 
targets using HH, HV, VH, and VV polarizations, yielding 1440 
synthetic chips per target class.  

C. Transfer Learning Methodology 

 Transfer Learning is a method of transferring knowledge 
gained by training a network on an initial (“source”) dataset and 
applying it to a separate related problem (the “targeted” dataset) 
[10]. Knowledge transfer is performed by initializing network 
weights during the target dataset training stage with those 
learned from the source training.  

 Our transfer learning studies have the general form of: (i) 
training on a large amount of synthetic data in the source stage 
and then (ii) using various amounts of measured training data to 
continue training the network parameters in the target stage. 
Classification performance of the network is validated with a 
separate measured dataset. Typically, the measured training and 
validation datasets contain the same target classes, but the 
source-stage synthetic training dataset may contain different 
target classes from the measured datasets. 

 We used two architectures, AConvNets [11] and DenseNet 
[12], in our transfer learning studies. Transfer learning also 
allows “freezing” (preventing updates) some or all the learned 
weights before training with a second set of data. Different 
layers within the network can be frozen in the second training 
stage, we describe this approach using the AConvNets 
architecture shown Error! Reference source not found.. As 
illustrated, there are five separate places where layer freezing 

 

Figure 1: Azimuth and elevation angles of target chips for the shared target 
classes in the MSTAR and SAMPLE datasets. 



 

 

may have utility in the AConvNets architecture. For each 
location, layers between the input image and the given location 
are frozen.   

III. LAYER FREEZING DURING TRANSFER LEARNING 

 In this section, we briefly study the effect that freezing 
network layers between training stages has on the overall 
transfer learning classification performance. When a layer is 
frozen, the network weights in the layer are not updated during 
the next training stage. This prevents these layers from learning 
during the subsequent training stage. Since different parts of the 
network learn different features, freezing layers prevents these 
learned features from changing due to additional training data. 

 Different configurations of frozen layers are applied during 
repeated instances of a transfer learning experiment to identify 
the resulting change in PCC performance. AConvNets is used 
for this purpose and consists of a sequence of five convolutional 
and pooling layers. Error! Reference source not found. 
displays the network architecture. This provides several 
locations to freeze layers between transfer learning stages, 
identified  as locations 1-5. Layers between the input image and 
the chosen location are frozen.  

 A series of experiments were performed to evaluate the 
performance impact of freezing layers during the transfer 
learning process. Locations 2, 3, and 4 were chosen to freeze to. 
Each trial was trained for 50 epochs on the entire synthetic 
MSTAR15 data, then for 50 epochs on a random subset of the 
measured MSTAR17 dataset. The network was validated 
against measured MSTAR15. In this case, the target and source 
stage training datasets are a high-quality match to the validation 
dataset in terms of target class and imaging parameters. Five 
trials were performed for each experiment, with performance 
statistics gathered over the last ten epochs of each trial. Figure 3 
shows the results as a box plot of PCC performance as a function 
of frozen layers and target training stage set size. 

As seen in Figure 3, there is a slight performance boost when 
freezing layers to locations 4 and 3 when training with 5%-10% 
of the target stage MSTAR17 dataset. However, as more 
measured data is used in the target training stage it becomes 
more advantageous to freeze no layers (allow the entire network 
to continue to train). Freezing most of the network (to location 
2) provides the lowest performance, which is expected since the 

network cannot adequately learn from the available high-quality 
measured MSTAR17 training data.  

 In general, this experiment shows that freezing a few early 
network layers provides a performance improvement when the 
synthetic source stage dataset is well-matched to the measured 
validation dataset and there is a small quantity of measured 
target training stage data available. Otherwise, it is 
advantageous to not freeze the network, allowing it to continue 
fully learning on the target stage training set. Similar results 
related to layer freezing are also obtained in [13]. Therefore, no 
layers are frozen in the subsequent transfer learning 
experiments.  

IV. TRANSFER LEARNING STUDIES  

This section describes a series of transfer learning 
experiments using different training datasets and details the 
resulting classification performance. Our focus is to assess the 
performance of TL techniques with synthetic datasets that both 
match and mismatch the target classes relative to the measured 
datasets. The general structure of these experiments is to 
initially train on a large synthetic image dataset (source training 
stage) for 100 epochs, then transfer the network to a target 
training stage where training is performed with a measured 
image dataset. The network is validated against a separate 
measured image dataset. 

Classification performance dependence on the measured 
training set size is examined through multiple executions of 
each TL experiment. For each execution a subset of the 
measured training dataset is randomly chosen for target stage 
training. Doing so allows characterizing the improvement of 
classification performance attributable to the transfer learning 
process with various quantities of measured training data. 

A function fit was performed to the average PCC of 10 
independent trials to approximate performance when using 

 

Figure 3: The AConvNets network architecture and potential freeze 
locations. Figure adapted from [11]. 

 

Figure 2: Frozen layers performance when training on MSTAR 15 synthetic 
transferring to MSTAR 17 measured and validating with MSTAR 15 
measured. 



 

 

between 5% and 100% of the target training stage measured 
data. The function used to fit this data is given by equation  

 

𝒇(𝒔, 𝒙𝟏, … , 𝒙𝟔) = 𝒙𝟏𝒆−|𝒙𝟐|𝒔 + 𝒙𝟑𝒆−|𝒙𝟒|𝒔 + 𝒙𝟓𝒆−|𝒙𝟔|𝒔,             (1) 
 

where 𝑠 is the subset fraction of the target stage training dataset. 

Coefficients 𝑥1, … , 𝑥6  were optimized to best match the 
function to the mean performance of the experiments. The 
standard deviation for the curve is identified as a transparent 
background around the average function-fit performance. Two 
curves are generated for each experiment set: 1) baseline 
performance where the network is only trained on a subset of 
the measured training data set samples, and 2) transfer learning 
performance where the network is trained on synthetic data for 
100 epochs then transferred to continue training with the same 
subset fraction of measured training data as in the baseline 
performance case. Training with measured data was performed 
for more than 200 epoch to ensure the network completely 
learned from the measured training set. 

A. Same Target Classes 

 In this section, we examine TL when the synthetic training 
dataset contains the same target classes as in the measured 
datasets and is therefore well-matched to the measured datasets. 
Separate experiments were performed which use different 
combinations of MSTAR and SAMPLE in the synthetic source 

stage and measured target stage, but the same validation dataset. 
Error! Reference source not found. summarizes the datasets 
used for each experiment. Note that experiments involving both 
MSTAR and SAMPLE (experiments 2a-2e) only use the shared 
5 classes (BMP, BTR70, T72, ZSU) and chips with an azimuth 
between 280 and 351 degrees due to the limitations of the Public 
SAMPLE dataset. 

 The first experiment trains using the synthetic MSTAR15 
data set in the source stage, the measured MSTAR17 data set in 
the target stage, and validates against the measured MSTAR15 
data set. Error! Reference source not found. and Error! 
Reference source not found. display the classification PCC 
performance for AConvNets and DenseNet. Transfer learning 
provides a PCC increase for each randomly selected subset size 
of the target stage training data. The PCC increase is much larger 
when using a small amount of measured training data than for 
cases with many training data training samples.  

 The transfer learning experiments in Figure 4 demonstrate 
that transfer learning using synthetic data allows for a 50% or 
more reduction in measured data while maintaining 
classification performance. For example, training with synthetic 
data and 10% of the MSTAR17 dataset yields equivalent 
performance to training with only 20% of the MSTAR17 
dataset. This shows that the measured MSTAR17 data is very 
well matched to the measured MSTAR15 validation set and will 
dominate the classification performance of the trained network. 
Since both MSTAR datasets were obtained during the same 
collection with the same physical target vehicles, it is expected 
that the datasets would closely match in both target signature 
and background clutter. 

 The second set of experiments examines scenarios where the 
training datasets are not as well-matched to the measured 
validation data set. This series of experiments uses SAMPLE 
training datasets that are a poorer match to the measured 
MSTAR15 validation dataset to demonstrate the impact of 
transfer learning with synthetic data.  

 Error! Reference source not found. displays the 
classification performance for each transfer learning scenario, 
where the AConvNets network architecture was used. 

Table 1: Datasets used for TL experiments with the same target 
classes. 

Exp. 

Source Stage 

Training Set 

(Synthetic) 

Target Stage 

Training Set 

(Measured) 

Validation 

Set 

(Measured) 

Number 

of Target 

Classes 

1 MSTAR 15 MSTAR 17  MSTAR 15 10 

2a MSTAR 15 MSTAR 17  MSTAR 15 5 

2b MSTAR 15 SAMPLE16/17 MSTAR 15 5 

2c MSTAR15 SAMPLE16 MSTAR15 5 

2d SAMPLE SAMPLE16/17 MSTAR15 5 

2e SAMPLE MSTAR17 MSTAR15 5 

 
 

 

Figure 4: Transfer learning experiment results when training on synthetic 
MSTAR15, transferring to measured MSTAR17, and validating with 
measured MSTAR 15. The AConvNets architecture was used. 

 

Figure 5: Transfer learning experiment results when training on synthetic 
MSTAR15, transferring to measured MSTAR17, and validating with 
measured MSTAR 15. The DenseNet architecture was used. 



 

 

Experiment 2a is the highest-fidelity training data match to the 
validation dataset, where each stage utilizes MSTAR data. 
Transfer learning provides a performance increase when few 
measured training chips are used, but a much smaller benefit 
when a larger amount of measured MSTAR15 data is trained 
with. These results match those of experiment 1 since the same 
data was used. 

 Experiments 2b-2d each train with the measured SAMPLE 
dataset during the target training stage. As seen in Error! 
Reference source not found., the average PCC of each baseline 
case is about 0.85, suggesting that the measured Public 
SAMPLE dataset is not as well matched to MSTAR15 as 
compared to MSTAR17. Experiments 2b-2c both train with 
synthetic MSTAR15 during the source stage, leading to a large 
classification performance improvement. Experiment 2d trains 
with synthetic SAMPLE during the source stage, which leads to 
a slight performance improvement, smaller than observed for 
experiments 2b-2c. In all cases, initial training with synthetic 
data via transfer learning helps alleviate the dataset mismatch 
problem and leads to better performance regardless of the 
number of measured training samples used.  

      Experiment 2e demonstrates it is possible to obtain 
significantly increased performance transfer learning from a 
synthetic to a measured dataset as compared to training on 
either of those datasets individually, shown using publicly 
available MSTAR and SAMPLE datasets. Training using 
synthetic SAMPLE data from [4] we found 64.4% PCC 

validating on MSTAR15, and 77.2% when training on ~45 
measured MSTAR17 chips, but 90.6% PCC when using these 

two training datasets together with transfer learning.  

 The results from the transfer learning experiments 
performed in this section are summarized into a few main 
conclusions. First, transfer learning leads to PCC improvement 
for all amounts of measured training stage data but provides the 
most improvement when small amounts of measured data are 
available to finish training. Second, performance improvement 
due to transfer learning is increased when the source dataset is 

well matched to the validation dataset. Finally, transfer learning 
performance improvement is large when measured training data 
is not as well-matched to the validation data as compared to the 
synthetic data (red and yellow curved of Figure 6), and in this 
case the performance benefit of transfer learning persists even 
when larger quantities of measured data is available. 

B. Different Target Classes 

 In this section, the synthetic dataset used in the transfer 
learning experiment does not contain target classes present in 
the measured datasets (target classes are disjoint). We perform a 
transfer learning experiment where the synthetic dataset 
contains MSTAR target classes disjoint from the validation set. 
This experiment trains using the synthetic MSTAR 15 dataset 
(classes: 2S1, BMP, BTR70, T72, ZSU) in the source stage, the 
measured MSTAR 17 dataset (classes: BRDM, BTR60, D7, 
T62, ZIL) in the target stage, and validates against the measured 
MSTAR 15 dataset (classes: BRDM, BTR60, D7, T62, ZIL). 
The synthetic dataset contains samples from a disjoint class set 
compared to the classes contained in the measured datasets.  

 Error! Reference source not found. and Figure 8 display 
the classification PCC performance using AConvNets and 
DenseNet. Transfer learning provides a slight PCC increase 
compared to the baseline network trained only on the subset of 
the measured training set. Note that using only synthetic data 
during training (zero measured training samples used in the 
target training stage) results in a PCC that is very low since none 
of the synthetic training data samples represent classes 

 

Figure 6: TL experiments involving both MSTAR and SAMPLE datasets. 
The legend lists datasets as (synthetic source training set)-(measured target 
training set)-(measured validation set). Solid lines represent the case of 
training with only measured data and dashed lines are the TL case. Network 
is AConvNets. 

Table 2: Datasets used for TL experiments with disjoint target classes. 

Exp. 

Source Stage 

Training Set 

(Synthetic) 

Target Stage 

Training Set 

(Measured) 

Validation Set 

(Measured) 

1 MSTAR 15 (disjoint) 

• Classes: 2S1, BMP, 

BTR70, T72, ZSU 

MSTAR 17 

• Classes: 

BRDM, 
BTR60, 

D7, T62, 
ZIL  

MSTAR 15 

• Classes: BRDM, 

BTR60, D7, T62, 
ZIL 

 

 

Figure 7: Transfer learning experiment results when training on synthetic 
MSTAR15 (disjoint), transferring to measured MSTAR 17, and validating 
with MSTAR15. The AConvNets architecture was used. 



 

 

contained in the measured datasets. This causes the network to 
misclassify the validation dataset. As more measured training 
data (which contains the desired target classes) is used in the 
transfer learning experiment, the PCC rapidly increases. 
 Overall, transfer learning from synthetic data of disjoint 
classes is beneficial, with consistent modest performance 
benefit. This is due to the synthetic training set only containing 
disjoint target classes so only generic SAR features are 
transferrable and becomes apparent when comparing to the 
results in Section IV A where class specific features are 
transferred. 

V. CONCLUSION 

The good ATR performance training using 100% 
synthetic data corresponding to the SAMPLE and MSTAR 
datasets demonstrates that networks trained on synthetic data 
can learn class specific features. We see that absolute 
performance gains from transfer learning when minimal 
measured data is available are much larger when the source 
dataset shares the same classes and imaging parameters as the 
validation set, supporting that class specific information is 
transferrable.  

When measured data is scarce (i.e. <50 chips per class 
for a 10 class experiment) it can be useful to freeze layer 
weights when transferring, however, when more data is 
available performance is improved by letting all weights fine 
tune. We show the benefit of transfer learning persists across 
different network architectures. When synthetic data is plentiful 
and measured data is scarce, the benefits of transfer learning 
may be increased for deeper networks as suggested by our 
results on AConvNets as compared to DenseNet, but this merits 
further study.  

Transfer learning leads to the largest performance 
improvements when available measured data is scarce, 
relatively less well matched to the validation data, and when the 
synthetic data is well matched to the validation dataset. We 

show it is possible to achieve significantly improved 
performance (>13% absolute PCC increase to over 90% PCC) 
using transfer learning from a synthetic to a measured dataset 
relative to training on these datasets individually using the 
publicly available synthetic SAMPLE and measured MSTAR 
datasets. Transfer learning from plentiful class matched 
synthetic data can allow 50% or more reduction in measured 
data requirements to achieve equivalent performance. 
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Figure 8: Transfer learning experiment results when training on synthetic 
MSTAR15 (disjoint), transferring to measured MSTAR 17, and validating 
with MSTAR15. The DenseNet architecture was used. 
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