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Abstract—In recent years there has been widespread adoption 
of Deep Convolutional Neural Networks to electro-optical (EO) 
image classification, most famously using the ImageNet database 
to form challenge problems. The Synthetic Aperture Radar (SAR) 
classification problem, typically referred to as Automatic Target 
Recognition (ATR), is a related topic that has received less 
attention. While there have been some custom networks proposed 
for SAR-ATR, the size of the literature is significantly smaller than 
that for EO classification. A natural question arises as to how well 
the state-of-the-art EO networks designed for natural (optical) 
image classification perform on standard SAR ATR problems. 
This paper evaluates a number of well-known EO architectures 
(including DenseNet, ResNet, Inception and Xception) on a 
standard SAR ATR problem and identifies the factors that drive 
performance. We also perform a comparison to existing SAR-
ATR networks in the literature. We recognize four important 
“pillars” of successful SAR ATR: data, architecture, 
augmentation and preprocessing. While the first two are well 
studied, the latter two are also of critical importance. In fact, we 
find that off-the-shelf EO networks can perform well on SAR -
ATR with appropriate preprocessing and data augmentation. 
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I. INTRODUCTION 
Deep Convolutional Neural Networks have enjoyed 

widespread success in visual image classification problems [1]–
[7], most famously using the ImageNet database [8] in a series 
of large scale visual recognition challenges [9]. Synthetic 
Aperture Radar (SAR) Automatic Target Recognition (ATR) is 
a related problem which primarily aims to classify man-made 
objects such as vehicles or aircraft using the radar modality 
instead of an optical sensor. While there have been some Deep 
Learning architectures networks proposed specifically for SAR-
ATR [10]–[15], the size of the literature is significantly smaller 
than that focused on the electro-optical (EO) application.  

A natural question arises as to how well networks designed 
for optical image classification perform in standard SAR ATR 
problems. Furthermore, it is of interest to determine what 
modifications are necessary to the architecture, data 
augmentation, or data preprocessing stages to unleash the utility 
of these networks in the SAR ATR problem.  

This paper evaluates a number of well-known EO 
architectures – including DenseNet [1], ResNet [2], EfficientNet 
[3], Inception [5], MobileNet [6], and Xception [7] – on a 
standard SAR ATR dataset called SAMPLE [16] and identifies 
the factors that drive performance. SAMPLE is a publicly 
available dataset which contains both synthetically generated 
and collected SAR images (“chips“) of military vehicles that 
have been ground truthed and have been studied elsewhere in 
the literature [17].  

Our study identifies four important “pillars” of successful 
SAR ATR – the data, the network architecture (or model), the 
data augmentation algorithm, and the preprocessing step. While 
the first two factors have been studied, the latter two factors are 
also of critical importance to train a functioning Deep Learning 
based SAR ATR algorithm. In fact, we find that off-the-shelf 
EO networks can perform well on SAR ATR when we use 
appropriate preprocessing and data augmentation.  

This paper proceeds as follows. First, in Section II, we 
describe the training and test data used for our studies. Next, in 
Section III we enumerate the network architectures we use in the 
study. Third, Section IV discusses the SAR-tailored set of data 
augmentations we use during training. Fourth, Section V 
describes the preprocessing methods typically used by EO 
networks and two preprocessing techniques specialized to SAR. 
Finally, Section VI shows the results of our extensive study 
which investigates more than thirty network architectures and 
six different preprocessing methods by capturing their 
performance statistically. These results show that many EO 
architectures can achieve fairly good ATR performance when 
coupled with the write preprocessing scheme. Finally, Section 
VII provides a conclusion and some comments. 

II. TRAINING AND TESTING DATA 
Our experiments use the Synthetic and Measured Paired and 

Labeled Experiment (SAMPLE) dataset [16] which has been 
recently released by the Air Force Research Laboratory (AFRL). 
SAMPLE includes a publicly available SAR dataset that 
consists of 10 target classes of collected data from the MSTAR 
flight test [18] and a recently created matching set of synthetic 
data. All images are “chips” of target-centered data of size 128 
× 128. The synthetic data is created using CAD models of the 
target chips and a ray-tracing approach to provide a fully 
synthetic set that matches the collected chips in azimuth, 
elevation, and target mode. Figure 1 shows an example chip 
from each class. 
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Fig 1. Example collected and synthetic chips from the 10-class SAMPLE dataset. Images are detected and displayed log-scale with 30dB of dynamic range. 

 

We use the synthetic set as training chips and the collected 
set as validation chips as is typically done in the literature [19]. 
Ultimately, all inputs to our network are magnitude-detected 
(i.e., we use the absolute value of the pixels, discarding the 
phase). Recent work [20] has studied using complex data with 
SAMPLE, finding that for the networks they investigated, 
complex-data networks did not significantly outperform 
magnitude-only networks. Fully exploiting the complex SAR 
data in ATR continues to be an open area of study.  

In addition, we have elected to divide the synthetic and 
collected sets in accordance with [17] where the training data 
comes from elevations 14∘ − 16∘  and the test data is at 17∘ 
elevation. As a result, there are a total of 806 training chips and 
539 test chips. 

III. NETWORK ARCHITECTURES 
Our study includes a suite of broadly cited image 

classification networks from the literature, many of which have 
implementation in the deep learning API for Python called 
Keras. We include DenseNet [1], ResNet [2], EfficientNet [3], 
[4], Inception [5], MobileNet [6], and Xception [7]. Each of 
these architectures includes a collection of particular 
architectures (e.g., DenseNet129, DenseNet169 and 
DenseNet201) which represent variations in architecture.  

Image classification architectures typically expect 3-channel 
(RGB) data as input whereas the (detected) SAMPLE SAR data 
is single-channel. The two obvious ways of dealing with this are 
channel blanking (i.e., putting the detected SAR data into the R 
channel and zeros into the G and B channels) or channel stuffing 
(i.e., replicating the detected data in all three channels). A 
preliminary investigation we performed indicated no major 
performance difference between the two approaches and so for 
this study we elected to do channel blanking. More sophisticated 
approaches, such as those that make use of polarization, 
complex data, or apply pre-filters to give the network three looks 
at the data simultaneously are of interest but beyond the scope 
of this study.  

In addition to these image classification networks, we also 
compare the performance of published algorithms that have 
been developed specifically for the purpose of SAR-ATR, 
including AConvNets [10], LM-BN-CNN [11], MorganNet 
[12], TemplateNet [13], and SMPL [16]1. This comparison is a 

 
1 [16] includes a description of the dataset, a network architecture we refer 
to as SMPL, and a preprocessing technique we refer to as “clipping“. 

second reason for using simple channel blanking for the image 
classification architectures because more sophisticated 
prefiltering would confound the comparison between the 
different classes of algorithms. 

IV. DATA AUGMENTATION 
As commonly done, we apply data augmentation to the 

training set at each stage of the training. This is a well-known 
approach to increase robustness in the learned model. In our 
experiments, we apply a SAR-specific set of data 
augmentations. We find that successful SAR ATR networks are 
enabled by augmentation approaches that are tailored to the 
unique aspects radar that distinguish it from EO.  

One property of SAR that differentiates it from EO is that it 
is not invariant under rotation. In contrast to optical images, 
which can be rotated arbitrarily and produce realistic images, 
SAR images must respect the illumination direction. This stems 
from the specular nature of SAR data. While EO measured data 
is often well-modeled as diffuse scattering, meaning the 
reflected energy is (roughly) independent of the illumination 
direction (the sun or other light source), SAR data exhibits 
specular scattering meaning the reflected signal is strongly 
dependent on the direction of the transmitted signal.  

A second distinguishing property of SAR – especially when 
used with man-made objects – is the large dynamic range. In 
contrast to EO imagery which is displayed meaningfully on a 
linear scale, typically SAR imagery is viewed on a log scale or 
with a quantization-based remapping.  

Furthermore, noise and clutter in the SAR modality is best 
modeled as Rayleigh or Weibull, rather than Gaussian noise. 
Finally, various timing and positioning errors manifest 
themselves in phase errors which are best modeled in the 
complex imagery.  

With this as background, we perform the following “SAR 
specific” steps in our data augmentation process: 

• Random Shift. Training chips are randomly 
translated in the horizontal and vertical dimensions 
(range and cross-range) to model the imperfect 
centering of the collected data. The shift is a uniform 
random variable with maximum shift of 10% of the 
image size.  



• Random Phase Error. Training Chips have a 
quadratic phase error (QPE) added to model residual 
defocus possibly present in the collected data. The 
QPE added to each chip is selected from a Gaussian 
random variable with 𝜎𝜎 =  150∘.  

• Random Target to Clutter Ratio. Training chips 
have Rayleigh clutter added to model the background 
clutter present in the collected chips. For each chip, we 
first randomly select the desired target to clutter ratio 
(TCR). We elected to draw the TCR from a Gaussian 
with mean 0𝑑𝑑𝑑𝑑  and standard deviation of 3𝑑𝑑𝑑𝑑 . We 
then add random Rayleigh clutter scaled to achieve 
this target TCR.  

• Random Pixel Swapping. A subset of the top-𝑁𝑁 
pixels are amplitude swapped with a neighbor. This 
models small differences between collected and 
training data either due to actual differences between 
the physical vehicle being collected and the CAD 
model or small differences in recorded viewing 
direction from actual viewing direction. We have 
elected to perform this perturbation on each pixel with 
probability 0.08 , and when a pixel is selected, a 
random neighbor pixel is selected and its amplitude is 
used in place of the current pixel.  

V. PREPROCESSING  
We investigate a number of preprocessing approaches, 

including the standard preprocessing methods in image 
classification efforts (i.e., de-meaning and scaling) and methods 
tailored to the SAR modality. As mentioned earlier, one 
important difference between SAR data and EO data is that SAR 
data includes a dramatically larger range of pixel values, 
typically spanning four or five decades.  

We find empirically that networks trained using 
preprocessing methods that are insensitive to the large variation 
in SAR pixel magnitudes (such as the simple scaling often 
employed with natural image classification) perform poorly as 
the weights tend to be overly swayed by a small number of large-
amplitude image pixels. In contrast, preprocessing methods 
which are sensitive to large amplitude spreads such as 
quantization and clipping lead to more effective networks.  

The preprocessing techniques we consider are: 

• DenseNet-style [1] – Input chips are simply scaled to 
between 0 and 1. 

• ResNet-style (caffe) [2] – Input chips are zero-
centered with respect to the ImageNet dataset, i.e., first 
scaled to be between 0 and 255, then set to have the 
same mean as the “R“ channel in ImageNet. 

• Inception-style [5] – Input chips are simply scaled  
between −1 and 1.  

• Top-N – Input chips are preprocessed by keeping only 
the 𝑁𝑁 =  5000  highest-amplitude pixels (the 
remaining are set to zero). Chips are then scaled 
between 0 and 1.  

• Clipping [16] – Input chips are preprocessed by first 
clipping large amplitude pixels (identified by an 
outlier test) and then setting all with amplitude more 
than 𝑑𝑑 =  64𝑑𝑑𝑑𝑑 below the maximum to zero. Finally, 
the data is scaled between 0 and 1.  

• Quantization [13], [21]–[23] – Input chips are 
preprocessed by keeping the 𝑁𝑁  highest amplitude 
pixels and quantizing to 𝑁𝑁𝑙𝑙  levels. We elect to use 
𝑁𝑁 =  400 and 𝑁𝑁𝑙𝑙  =  6 in these experiments. 

VI. EXPERIMENTAL RESULTS 
Our primary result is a performance comparison of the 

architectures discussed in Section III. These architectures 
include both image classification models and models developed 
specifically for the SAR problem. The comparisons are carried 
out using the SAMPLE data discussed in Section II, where the 
10-class training data is synthetically generated and the testing 
data comes from an airborne collect. Of particular interest is the 
performance of the architectures with the different 
preprocessing approaches discussed in Section V.  

The performance of a trained network on a test dataset is 
inherently stochastic, stemming from the random batching and 
data augmentation that happens at every training epoch. 
Therefore, our approach to characterizing the performance of a 
network will be to run 𝑇𝑇 trials where each trial fully trains the 
network for E epochs. We then report the mean performance and 
standard deviation (over the 𝑇𝑇 training episodes) at final epoch 
𝐸𝐸. Here we use 𝐸𝐸 =  60 epochs and 𝑇𝑇 =  100 trials, consistent 
with what is done elsewhere [17].  

Figures 2, 3, and 4 illustrate the SAR-ATR classification 
performance using the ResNet, Densenet, *Ception, and 
EfficientNet family of architectures with the different 
preprocessing approaches described in Section V. Each bar is 
centered at the mean validation performance and is one standard 
deviation tall. Broadly speaking, we find SAR-tailored 
preprocessing approaches (primarily quantization but usually 
clipping as well) generate superior performance over those that 
use EO-type preprocessing (i.e., simple scaling). 

 
Fig 2. Test set Percent Correctly Classified (PCC) for six different ResNet 
configurations and the six different preprocessing approaches. 



 
Fig 3. Test set Percent Correctly Classified (PCC) for DenseNet, Inception, 
Xception and MobileNet configurations and the six different preprocessing 
approaches. 

 
Fig 4. Test set Percent Correctly Classified (PCC) for fifteen different 
EfficientNet configurations and the six different preprocessing approaches. 

 Finally, Figure 5 summarizes the EO-network results from 
the proceeding figures by selecting one representative variant of 
each architecture and showing the performance with 
quantization preprocessing and DenseNet preprocessing. 
Furthermore, we also show the performance of published 
architectures that were designed specifically for SAR-ATR 
(TemplateNet [13], MorganNet [12], LM-BN-CNN [11], 
AconvNets [10], and SAMPLE [16]). Generally, we find that 
quantization-based preprocessing achieves the best 
performance. Additionally, while the SAR-specific networks 
perform best, EO networks using quantization preprocessing 
also perform credibly.  

 

 
Fig. 5. Performance of networks designed for SAR-ATR and representative off-
the-shelf EO networks with different preprocessing schemes. Generally, we 
find that quantization-based preprocessing achieves higher performance than 
simple scaling. Additionally, while the SAR-specific networks perform best, 
EO networks using quanization preprocessing also perform credibly. 

VII. CONCLUSION 
 This paper studied the performance of Deep Learning 
approaches for SAR-ATR. Of particular interest here is the 
application of state-of-the-art EO architectures to the SAR 
problem. While it is well known that the model architecture and 
training data are strong drivers of performance, we find that 
SAR-tailored preprocessing and data augmentation play an 
crucial role algorithm performance. In fact, while SAR-specific 
networks provide the best performance, we find that many EO 
networks with appropriate front-end manipulations can perform 
fairly well on the SAR-ATR problem.  
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