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Abstract

Relative edge response (RER) is a common performance metric in the remote sensing literature. RER
describes the extent to which the image of a perfect edge is blurred by the optical system. It is shown that
the average RER across edges in all directions is a bounded linear functional on the space of point spread
functions. This formulation generalizes several common imaging performance metrics and illustrates
remarkable similarity between RER and encircled energy.

1 Introduction

The National Imagery Interpretability Rating Scale
(NIIRS) is a partially subjective measure of image
quality widely used throughout the remote sensing
community. Initially designed for military recon-
naissance imagery, a trained human analyst assigns
a NIIRS rating to an image based on the objects
that could be identified in the image [1]. There
exist published criteria for assigning NIIRS values.
For example, to rate an image NIIRS 5, an analyst
should be able to detect the presence of large indi-
vidual radar antennas or an open missile silo door
if such objects are present [2].

The abundance of imagery and relative scarcity of
imagery analysts, along with the desire to predict
NIIRS ratings prior to image collection, has led to
the development of so-called image quality equa-
tions (IQEs), empirical formulae for estimating NI-
IRS from engineering parameters. The well-known
general image quality equation (GIQE) [3] is a func-
tion of ground sample distance, signal-to-noise ra-
tio, terms related to post-processing effects, and fi-
nally relative edge response (RER).

RER describes the extent to which the image of a
perfect edge is blurred by the optical system. A per-
fect edge is formalized as a unit-height step function,
and the RER is defined as difference in height of the
blurred edge at + 1

2 and − 1
2 pixels, as depicted in

Figure 1.

The blurring effect of an optical system is generally
asymmetric, meaning that the RER will be differ-
ent for edges in different directions. Averaging the
RER over multiple edge directions provides a single
number to use as input to an IQE.

Figure 1: Relative edge response is the difference in
height of a blurred edge at ± 1

2 pixels.

2 Mathematical Formulation

Let psf : R2 → R+ be the point spread function of
an optical imaging system. For simplicity, psf(r)
can be thought of as the irradiance at position r in
units of pixels on the image of a distant point source.
Assume psf(r) is normalized to unit integral.

An ideal edge making angle θ with the x-axis is given
by

f(x, y) =

{
1 if x cos θ + y sin θ ≥ 0

0 otherwise
(1)

The edge response function Eθ : R → R is the pro-
file of the blurred edge after f is convolved with the
point spread function, and is given by



Eθ(d) =
∫ ∞

−d

dxRθ {psf} (x), (2)

where Rθ : L
2(R2) → L2(R) is a projection opera-

tor, commonly known as the Radon transform:

Rθ {φ} (t) =
∫
R
dx

∫
R
dy φ(x, y)δ(t−x cos θ−y sin θ).

(3)

The relative edge response, as a function of edge
direction θ, is defined as the difference in edge re-
sponse at + 1

2 and − 1
2 pixels:

rer(θ) = Eθ
(
1

2

)
− Eθ

(
−1

2

)
(4)

=

∫ 1
2

− 1
2

dxRθ {psf} (x). (5)

Equation 5 can be written as an inner product on
the Hilbert space L2(R):

rer(θ) = ⟨Rθ {psf} , rect⟩ , (6)

where rect(x) is 1 for |x| ≤ 1
2 and 0 otherwise.

The central slice theorem states that the one-
dimensional Fourier transform of the projection of
a function at angle θ is equivalent to a slice at
angle θ through the origin of the two-dimensional
Fourier transform. This is expressed in operator
form as F1Rθ = SθF2, where F1 and F2 are the
one- and two-dimensional Fourier transforms re-
spectively, and Sθ : L

2(R2) → L2(R) is a slice oper-
ator: Sθ {φ} (t) = φ(t cos θ, t sin θ).

Applying the central slice theorem to Equation 6
yields an expression for RER without the projection
operator Rθ, and with the observation that the two-
dimensional Fourier transform of the point spread
function is the optical transfer function, otf : R2 →
C, we have

rer(θ) =
〈
F−1

1 SθF2 {psf} , rect
〉

(7)

=
〈
F−1

1 Sθ {otf} , rect
〉
. (8)

The Fourier transform is a unitary operator (Parse-
val’s theorem), meaning that ⟨f,Fg⟩ =

〈
F−1f, g

〉
,

and the Fourier transform of the rect function is the
well-known sinc function, therefore

rer(θ) = ⟨Sθ {otf} , sinc⟩ (9)

=

∫
R
dξ otf(ξ cos θ, ξ sin θ) sinc(ξ). (10)

Thus we have an expression for the RER for an edge
at a given angle θ. Equation 10 was derived in [4]
using a slightly different approach. The authors ex-
plicitly derived a formula for the edge response func-
tion E before evaluating at ± 1

2 . An advantage of
the derivation presented here is that it avoids the δ
distribution and Cauchy principal value associated
with the Fourier transform of a step function.

3 Average RER
Let M : L2(R) → R be an averaging functional on
the space of relative edge response functions. For
example, the average RER for horizontal and verti-
cal edges would be M{rer} = 1

2

(
rer(0) + rer(π2 )

)
.

In general, M may be nonlinear, but here we shall
consider the linear operation of taking the mean
value of rer(θ) on [0, π):

M{rer} =
1

π

∫ π

0

dθ rer(θ) (11)

=
1

π

∫ π

0

dθ

∫ ∞

−∞
dξ otf(ξ cos θ, ξ sin θ) sinc(ξ)

(12)

Multiplying the integrand by ξ
ξ = 1, Equation 12

is immediately recognizable as an integral over the
two-dimensional plane in polar coordinates, which
again can be written as an inner product, this time
on the Hilbert space L2(R2):

M{rer} =
1

π

∫
R2

d2ρ otf(ρ)
sinc(|ρ|)

|ρ|
(13)

=

〈
otf,

sinc(|ρ|)
π|ρ|

〉
(14)

By Parseval’s theorem, Equation 14 is equal to
an inner product of the PSF with some two-
dimensional kernel function w:

M{rer} = ⟨psf, w⟩ , (15)

where



w(r) = F2

{
sinc(|ρ|)
π|ρ|

}
(r). (16)

Rotational symmetry allows the two-dimensional
Fourier transform to be written as a Hankel trans-
form:

w(r) = H
{
sinc(ρ)

πρ

}
(r) (17)

= 2π

∫ ∞

0

dρ sinc(ρ)J0(2πrρ), (18)

where J0 is the zeroth order Bessel function of the
first kind.

The integral in Equation 18 is listed in standard
reference tables [5], but it can also be solved with
a simple geometrical argument. Equation 5 shows
that the RER for a given edge direction is an inte-
gral of the PSF over a unit-wide infinite strip cen-
tered on the origin. Consider a test point at a dis-
tance r from the origin. The value of w(r) is simply
the fraction of unit-wide infinite strips containing
the test point. All points inside the unit-diameter
circle (r ≤ 1

2 ) will be contained in every strip. For
r > 1

2 , the containing fraction is ϕ
π , where ϕ is the

angle formed by the two lines tangent to the unit-
diameter circle and intersecting the test point, as
depicted in Figure 2. Solving for ϕ in terms of r
results in the following expression for w(r):

w(r) =

{
1 if |r| ≤ 1

2
2
π arcsin

(
1

2|r|

)
if |r| > 1

2

(19)

Figure 2: For r > 1
2 , w(r) = ϕ

π , where ϕ is the angle
depicted in the figure.

4 Relation to encircled energy
Several common imaging performance metrics can
be expressed as linear functionals on the PSF. For
example, the Strehl ratio S is the ratio of the peak
value of the PSF to the peak value of the theoreti-
cal diffraction-limited PSF. Mathematically, this is
simply a δ distribution scaled by α, the peak value
of the diffraction-limited PSF:

S = α−1

∫
R
d2r psf(r)δ(r) (20)

Encircled energy is the integral of a properly-
normalized PSF over a circle of radius a, and is
often plotted as a function of a. This is expressed
as an inner product ⟨psf, k⟩ for a kernel function k:

k(r) =

{
1 if |r| ≤ a

0 if |r| > a
(21)

Recall that RER is defined as the difference in edge
response at ± 1

2 pixels. A generalized RER can be
defined as the difference in edge response at ±a pix-
els, in which case w, the kernel for the inner product
with the PSF, becomes

w(r) =

{
1 if |r| ≤ a
2
π arcsin

(
a
|r|

)
if |r| > a

. (22)

Figure 3: Radial profiles of the kernels for calculat-
ing encircled energy and generalized average RER.

Radial profiles of k and w are shown in Figure 3.
Here the similarity between encircled energy and
the generalized average RER is clear. As functions
of a, the generalized average RER is strictly greater



than the encircled energy since the PSF is nonnega-
tive with unbounded support. However, the rapidly
decreasing nature of the PSF drives the two func-
tions to be quite similar in practice.

5 Conclusion

We have shown that the average relative edge re-
sponse is a straightforward inner product of the
point spread function with a rotationally symmet-
ric kernel function. This result can have practical
use in estimating RER as an input to image quality
equations for predicting NIIRS ratings. Techniques
for estimating RER from suitable edges within an
image have been widely published [6,7]. However if
no suitable edges are present, the average RER can
still be calculated as long as an adequately sampled
point spread function can be obtained, for example
by super-resolved imaging of a distance point source
or indirectly through phase retrieval techniques.

It is important to note that the average RER used
here is an arithmetic mean across all edge directions.
Some authors define average RER as a geometric
mean of the RER in two or more edge directions.
The choice of average type is often made without
any real justification [8]. In such cases, engineers
and IQE developers should consider defining aver-
age RER as an arithmetic mean for the tractable
mathematical properties presented here.

The similarity between the average RER and en-
circled energy could also be of practical use to the
working engineer. In cases where an encircled en-
ergy measurement is desired but difficult to obtain,
a generalized average RER measurement could po-
tentially capture much of the same information.
Conversely, encircled energy could conceivably be
a useful surrogate for average RER, and a require-
ment specification on both quantities may be largely
redundant.
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