
  

Abstract— This paper describes an investigation of the source 

of geospatial error in digital surface models (DSMs) constructed 

from multiple satellite images. In this study the uncertainty in 

surface geometry is separated into two spatial components; global 

error that affects the absolute position of the surface, and local 

error that varies from surface point to surface point. The global 

error component is caused by inaccuracy in the satellite imaging 

process, mainly due to uncertainty in the satellite position and 

orientation (pose) during image collection. The key sources of local 

error are; lack of surface appearance texture, shadows and 

occlusion. These conditions prevent successful matches between 

corresponding points in the images of a stereo pair.  

A key result of the investigation is a new algorithm for 

determining the absolute geo-position of the DSM that reflects the 

pose covariance of each satellite during image collection. This 

covariance information is used to weigh the evidence from each 

image in the computation of the global position of the DSM. The 

use of covariance information significantly decreases the overall 

uncertainty in global position and results in a 3-d covariance 

matrix for the global accuracy of the DSM. This covariance matrix 

defines a confidence ellipsoid within which the actual error must 

reside.  Moreover, the absolute geo-position of each image is 

refined to the reduced uncertainty derived from the weighted 

evidence from the entire image set. 

The paper also describes an approach to the prediction of local 

error in the DSM surface. The observed variance in surface 

position within a single stereo surface reconstruction defines the 

local horizontal error.  The variance in the fused set of elevations 

from multiple stereo pairs at a single DSM location defines the 

local vertical error.   

These accuracy predictions are compared to ground truth 

provided by LiDAR scans of the same geographic region of 

interest. The prediction of global and local error is compared to 

the actual errors for several geographic locations and mixes of 

satellite type. The predicted error bounds contain the observed 

errors according to the allowed percentage of outliers. 

 
Index Terms—Stereo, Photogrammetry, Digital Surface 

Models, Satellite Imaging 

I. INTRODUCTION 

This paper is focused on the problem of predicting the 

expected geo-spatial accuracy of digital surface models 

(DSMs) generated from general satellite image archives. 

Recent advances in stereo reconstruction algorithms have 
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enabled the generation of a single DSM from hundreds of 

stereo pairs, as are available over many locations of interest on 

the Earth, providing complementary and redundant elevation 

samples. Satellite image datasets are available as a service to 

commercial vendors of such DSMs [1] such as Vricon and 

provided as open challenge datasets for academic research [2]. 

Moreover, Department of Defense contractors have unlimited 

free use of MAXAR’s commercial archive of millions of 

satellite images [3]. The MAXAR archive provides at least 10-

20 images for most regions on the Earth landmass with many 

areas having coverage of 100s of images. 

  Commercial satellite images are equipped with metadata that 

describes the projection from 3-d geographic coordinates to 

image coordinates in the form of a rational polynomial model 

(RPC). Given the covariance of satellite pose errors during 

image collection, the DSM geo-positioning accuracy can be 

analyzed by a process known as error propagation [4] where 

known error covariances are passed through the algorithmic 

stages of stereo geometry formation to predict the full 3 × 3 

covariance matrix associated with the global position of the 

DSM.  In this paper, traditional error propagation is 

augmented with the direct computation of global DSM 

position without requiring an initial guess or multiple 

iterations. 

  Formation of multi-view stereo surface geometry is a 

complex process that depends on many factors including the 

fusion of 100s of 3-d points associated with each DSM grid 

cell, where each associated pointset can contain a high 

proportion of outliers (see Fig. 1). Consequently, traditional 

error propagation methods cannot be applied to determine the 

local elevation error at each grid cell. This paper introduces 

new methods to estimate predicted accuracy in multi-image 

DSM products and demonstrates these methods on a 

heterogeneous mix of satellite platforms and for various scene 

contexts and geographic locations. 

A. Digital Surface Models from Satellite Images 

    The rational polynomial coefficient (RPC) projection 

metadata provides the necessary information to produce a 

rectified stereo pair from two arbitrary commercial satellite 

images [5]. The result is that vast archives of satellite image 

data can be exploited to produce DSMs for many regions on 

the Earth surface and over an extensive range of time 
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intervals.  Moreover, images from different satellite platforms 

can be combined into a stereo pair further extending the 

population of images that can be used to generate surface 

models. 

B. Semi-global Matching 

  Another key advance that makes the generation of accurate 

and high-resolution DSMs from general image archives 

feasible was the development of the semi-global matching 

(SGM) stereo algorithm by Hirschmüller [6]. The SGM 

algorithm provides a dense reconstruction of 3-d geometry 

based on matching corresponding pixels in the left and right 

stereo images using a dynamic programming scheme. The 

SGM algorithm makes a global assessment of the cost for 

assigning corresponding pixels and thus errors in matching left 

and right image pixels are greatly reduced, while at the same 

time maintaining computational efficiency. The match cost is 

based on neighborhood appearance measures at each pixel. 

However, matching errors are unavoidable in the case of 

occlusion, shadowing and actual scene content differences, 

such as seasonal changes. 

C. Geo-registration 

  To produce consistent geometry from multiple stereo pairs it 

is necessary to geo-register the set of input images into a 

common spatial coordinate frame with a high degree of 

accuracy. The registration must be achieved with sub-pixel 
relative accuracy so that a 3-d point produced by one stereo 

pair is closely aligned with the same point produced by other 

pairs. It is necessary to carry out the alignment of all the 

images in the dataset at the same time to achieve consistent 

geometry in a procedure called bundle adjustment [7]. The 

bundle adjustment algorithm relies on corresponding image 

features to provide constraints to solve for the unknown 

alignment transformation of each image. A set of image 

correspondences across a subset of the input images 

corresponding to a single 3-d point is called a track. Bundle 

adjustment simultaneously determines the 3-d point 

coordinates and adjusts the projection models of the track 

images to achieve accurate relative co-registration. Note that 

accurate relative registration does not guarantee accurate 

global registration. 

D. Multiple Stereo Pair Fusion 

  Finally, it is necessary to fuse together multiple sets of 

densely reconstructed 3-d points, generated from their 

respective multiple stereo pairs, to form a complete surface. 

No single pair can produce a complete surface model given 

the occlusion present in a 3-d scene. For example, in urban 

environments many viewpoints are required to observe all 

surfaces due to occlusion by tall buildings. Similarly, cast 

shadows in the scene observed by a single stereo pair produce 

areas of unknown geometry due to the failure to find matching 

appearance values between a shadowed and visible surface 

point. Shadow differences occur with images taken at different 

time of the year or with different satellites. Hirschmüller 

suggested some fusion strategies in his original paper, and the 

topic has received much attention in the literature [8,9]. For 

the case of a digital surface model, multiple stereo pairs 

produce a set of elevation values for each position in the 𝑥, 𝑦 

plane and fusion is the process of selecting a single elevation 

that represents the set. One common approach is to find the 

median elevation. However, the median estimate can produce 

erroneous results in the case of high outlier populations. A 

more robust fusion method is introduced in section VI.C. 

II. TYPES OF DIGITAL SURFACE MODEL ERRORS 

  A DSM is a function, 𝑧(𝑥, 𝑦) where a horizontal 

position,(𝑥, 𝑦), maps to a single elevation value, 𝑧. The DSM 

can be represented in different coordinate systems such as 

geographic coordinates based on WGS84, where 𝑥 and 𝑦 are 

in degrees and for Universal Transverse Mercator (UTM) in 

meters. DSMs are often encoded as GEOTIFF files with 

metadata that defines the geographic coordinate system and 

DSM grid spacing. 

A. Horizontal Error 

  Ideally, the (𝑖, 𝑗) location of each DSM pixel corresponds to 

the (𝑥, 𝑦) location of that surface position in the actual scene. 

The location will be quantized by the granularity of the DSM 

image pixel spacing. However, the error in the horizontal 

location can be much larger than the pixel spacing. Denote the 

actual ground truth location of pixel (𝑖, 𝑗) as (𝑥𝑔𝑡 , 𝑦𝑔𝑡) and 

denote the DSM position as specified by a GEOTIFF image 

as (𝑥𝑑𝑠𝑚, 𝑦𝑑𝑠𝑚). The (𝑥, 𝑦) error is defined as, 

 

typically called horizontal error since the error vector lies in 

the horizontal  𝑥, 𝑦 plane.  

B. Vertical Error 

 
Fig. 1 The distribution of 100 stereo-derived elevation values (light grey) for a 

single (𝑥, 𝑦) location. The dark grey histogram bins represent the chosen 

consensus set of inliers. (see section VI.C) 

    Even if the horizontal position is perfectly aligned with its 
ground truth position there can be error in the elevation, 

𝑧(𝑥, 𝑦), specified by the DSM at each (𝑥, 𝑦) location. One 

component of vertical error is the result of fusing 100 or more 

stereo pair estimates for 𝑧(𝑥, 𝑦). There can be many outliers 

due to errors in stereo matching as shown in Fig. 1.The fused 

result is thus perturbed from the ground truth value even with 

minimum variance estimators. Moreover, each stereo pair may 

not be in exact geo-registration and so there can be blurring of 

surface features due to fusing the displaced surfaces. 

𝜀𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = (𝑥𝑑𝑠𝑚 − 𝑥𝑔𝑡)𝑥̂ + (𝑦𝑑𝑠𝑚 − 𝑦𝑔𝑡)𝑦̂  (1) 



C. Global Error 

  Another component of horizontal and vertical error is due to 

a global transformation of the entire DSM with respect to the 

correct geographic location of the surface. Such global 

transformations are caused by error in the image geo-

registration process. The geo-registration algorithm does not 

make use of any known ground points but relies on the 

bundle-adjustment algorithm to average out errors in the 

metadata that defines the projection of a 3-d point into image 

coordinates. A large component of this type of error is due to 

uncertainty in the pointing direction of the satellite during 

image collection. The satellite is hundreds of kilometers from 

the Earth surface and so even a few micro-radians of 

orientation error can cause meters of positional error at the 

surface. If the satellite metadata is biased, then a residual 

global 3-d error in the position of the entire DSM will occur. 

D. Local Error 

  Horizontal and vertical errors can vary from pixel to pixel 

and become larger near the boundaries of building roofs or 

other sharp changes in surface elevation. These larger errors 

are due mainly to error in pixel correspondences within the 

SGM algorithm due to variations in appearance between 

images so that errors in stereo correspondence occur. For 

example, some locations can be missed entirely if one image 

in the stereo pair has a surface point in shadow and the other 
does not.  

  Error can also arise due to the quantization of corresponding 

locations in a stereo pair since SGM match locations are in 

terms of integer pixel coordinates, i.e., ±1 pixel in rectified 

image space, and depending on the view angle separation of 

the pair, this quantization can translate to a significant error in 

the 3-d position of the intersection point. That is, the 

geometric accuracy of the intersection of two rays degrades as 

the rays become more parallel.  

  Another source of horizontal error is the assignment of 3-d 

points generated from the stereo pairs to quantized DSM grid 

locations. The 3-d points assigned to a pixel bin form the 

population that is used to fuse the  𝑧 value for that bin. 

However, the centroid of the population is not generally at the 

center of the pixel and so a shift in horizontal location for the 

fused 𝑧 value is generated. 

E. Previous approaches 

a) Global error  

 
Fig. 2 The imaging satellite pose covariance coordinate system. The 

covariance of intersection point X is derived from the known covariance of 

sensor pose. 

  A standard approach to model global error of multi-image 

geo-positioning (MIG) such as a DSM is to propagate known 

error covariance in the pose (position and attitude) of an 

imaging satellite to the 3 × 3 covariance matrix of 3-d point 

coordinates [10]. The coordinate system for satellite position 

and attitude (pose) error is illustrated in Fig. 2. The analysis 

for the covariance of 𝑋 for 𝑛 satellite images requires three 

matrices: Σ𝑝 the 6𝑛 × 6𝑛 covariance matrix for satellite pose 

errors;  𝐵𝑝 the 2𝑛 × 6𝑛 Jacobian matrix of derivatives of 

image coordinates with respect to pose; and 𝐵 the 2𝑛 × 3 

matrix of derivatives of image coordinates with respect to the 

coordinates of 𝑋.  

  Denote the error in the intersection point as 𝜕𝑋 so that 

 𝑋 = 𝑋0 + 𝜕𝑋. The covariance matrix for 𝜕𝑋 is denoted 

as 𝑃 =  〈𝜕𝑋𝜕𝑋𝑇〉, where 〈∙〉 indicates expectation over an 

ensemble of random instances. Given these definitions the 

error propagation proceeds as follows.   

𝑊 = (𝐵𝑝Σ𝑝𝐵𝑝
𝑇)

−1
 (2) 

𝑃 =  (𝐵𝑇𝑊𝐵)−1 (3) 

The 2𝑛 × 2𝑛 weight matrix 𝑊 is the inverse covariance 

matrix for errors in image coordinates due to satellite pose 

errors. This weight matrix propagates pose errors to produce 

the covariance matrix 𝑃 for intersection point coordinates via 

the matrix 𝐵. This analysis in terms of derivatives is valid if 

the intersection point 𝑋 is near its true value and the pose 

errors are small enough so that first derivatives of the 

projection from 3-d to 2-d are sufficiently accurate. 

  There are two limitations of this approach: 1) it is necessary 

to have an initial guess for the intersection point; 2) there is no 

prescription for the application of satellite pose uncertainty to 

the computation of the initial guess for the intersection point. 

Instead, a different procedure to produce the initial guess is 

recommended such as least-squares line intersection [11].  The 

method does however provide a way of refining the initial 

guess based on the pose covariance information. The value 

of 𝑋 can be iteratively updated by, 

𝜕𝑋 = 𝑃𝐵𝑇𝑊(𝑥̃ − 𝑥), (4) 

where 𝑥 is the image projection of 𝑋 and 𝑥̃ is the declared 

image position of 𝑋.    

b) Local error  

 
Fig. 3 Estimating local errors in disparity. a) The set of neighborhood rings 

for computing total variation class. b) The relation between total variation 
class and the standard deviation of disparity. 

  There have been previous efforts to model the effect of the 

types of local errors defined above. A method called total 

variation can be applied to the disparity image generated by 

the SGM algorithm. The disparity image encodes the row by 

row pixel shift (disparity) required to match each pixel in the 

one stereo pair image to a pixel on the same row in the other 

image. It has been proposed by Kuhn that localized, large 



changes in disparity will be characteristic of high uncertainty 

in the reconstructed 3-d geometry [12]. Kuhn calls the 

quantification of these rapid changes total variation.  

  The computation of total variation is illustrated in Fig. 3a). 

The class index of total variation of disparity is computed as, 

𝑇𝑉𝑐𝑙𝑎𝑠𝑠 = max
𝑛

(∑
1

8𝑚
∑ √|𝑑𝑖+1,𝑗 − 𝑑𝑖,𝑗| + |𝑑𝑖,𝑗+1 − 𝑑𝑖,𝑗|

𝑖,𝑗∈𝑁𝑚

𝑛

𝑚=1

< 𝜃) 

(5) 

, where 𝑚 is the radius of a neighborhood of pixels, 𝑁𝑚 as 

shown in Fig. 3a), and 𝑑𝑖,𝑗 is the disparity at neighborhood 

location (𝑖, 𝑗). If the disparity image is smooth, a large radius 

is required before changes in disparity occur that exceed the 

threshold 𝜃. Conversely, if the disparity region is noisy then 

the threshold will be exceeded for small values of 𝑚. The 

index value can be mapped to the corresponding value of 

actual standard deviation in disparity by observing the values 

of 𝑇𝑉𝑐𝑙𝑎𝑠𝑠 on training data equipped with ground truth 

disparity values. An example curve relating 𝑇𝑉𝑐𝑙𝑎𝑠𝑠 to the 

standard deviation of disparity, 𝜎𝑑𝑖𝑠𝑝 , is shown in Fig. 3 b). 

The standard deviation in disparity is then used to compute the 

covariance matrix of the reconstructed 3-d points for the stereo 

pair. 

 
Fig. 4 a) Drone image. b) Disparity image. c) Predicted uncertainty in 

disparity. From Rodarmel et al [13]. 

  This approach has been applied to estimating the local errors 

in 3-d point clouds derived from aerial images collected by a 

small drone. The work by Rodarmel et al. [13] applies 

rigorous error propagation methods to predict spatially varying 

point covariance. An example of predicted disparity standard 

deviations from the disparity image, see Fig. 4c), is shown to 

bound the actual errors as determined from ground truth point 

positions. 

F. Proposed approach 

  A new approach that is keyed to the specific case of DSM 

construction from satellite images is proposed. In the 

development to follow, a typical multi-image stereo DSM 

reconstruction system is used to illustrate the method and 

study the results of applying satellite pose covariance to the 

prediction of local and global errors manifested for a given 

mix of satellite sensor error characteristics. The DSM 

reconstruction computational pipeline is formulated in terms 

of services such as radiometric correction, region of interest 

tiling, image geo-registration, stereo-pair processing and 

fusion, hereafter known as the “system.” The following two 

sections address “global” and “local” errors, respectively.  The 

former is driven by intersection geometry and impacts all 

points in the scene in the same manner, while the latter is 

driven by the per-pixel matching uncertainty to reconstruct the 

disparities, or scene depths. 

a) Global error  

  The prediction of global accuracy is based on propagating the 

pose covariance of the satellite sensors throughout the geo-

registration process and its construction of the 3-d intersection 

point for matched feature correspondences across multiple 

images (called a track). Such tracks are found by matching 

features such as SIFT [14] between pairs of images and 

recursively building up matches among a set of images. 

Proposed matches are tested with respect to the epipolar 

constraint, i.e., given a correspondence pair, the position of 

one match must lie close to the epipolar line of the other 

match.  

  The SIFT implementation used in the experiments below 

achieves sub-pixel accuracy by interpolating the maximum 

value of the Laplacian signal. The largest feature track 

typically corresponds to SIFT matches from a small dark 

depression such as a hole, so that illumination and viewpoint 

variations do not affect the match. The track feature 

correspondences enable the simultaneous determination of the 

3-d point formed by the intersection of rays back-projected 

from each feature location and the image translations required 

to co-register the 3-d to 2-d projection functions for the track 

images.  

  In this approach, the satellite pose covariance informs the 

determination of the 3-d track point by weighing the accuracy 

of sensor rays cast from each track correspondence. The ray 

intersection algorithm uses covariance-weighted least squares 

to find the 3-d point that minimizes the sum of perpendicular 

distances from the rays to the point. The predicted covariance 

of the 3-d track point emerges as an integral result of the 

intersection algorithm. Global DSM placement is rigidly 

attached to the 3-d track point since the images are all co-

registered with respect to the forward projection of the point 

into each image. The covariance of the global DSM position 

then corresponds to the covariance in the location of the 3-d 

track point. Since the solution is based on linear least squares, 

the result is obtained in closed form not requiring an iterative 

solution with the attendant risk of non-convergence which 

may occur when one or more measurements contains a 

blunder.  Thus, outlier detection and removal can occur 

without the risk of non-convergence. 

b) Local error 

  The prediction of local vertical and horizontal accuracy is 

based on an analysis of the fusion of stereo point clouds. A 

stereo pair produces a dense point cloud with a point 

generated for each valid location in the disparity map. A 

typical stereo pair will generate millions of points, some of 

which are invalid due to incorrect correspondences found by 

the semi-global matching (SGM) algorithm. In the proposed 

approach the SGM algorithm is run twice, a second time with 

the images processed in reverse order. The 3-d points 

generated by the forward and reverse order of the stereo pair 



are compared and a high probability assigned to a 3-d point if 

its forward and reverse locations are close to each other and 

lower probabilities as the distance between the forward and 

reverse locations increases. The 3-d point positions for the two 

pair orders can be considered independent measurements for 

large errors (blunders) since the triangulated points involve 

different pixel locations for the forward and reverse orders. 

  Unlike the comparison of disparity values, geometric 

distance comparison is invariant to stereo pair view separation 

and so the point probability values for different pairs can be 

compared. The probabilities are used to weigh the evidence 

from multiple stereo pairs in forming the pixel bin populations 

and in determining the elevation value for each bin. This 

weighted geometric information can then be used to compute 

the horizontal and vertical variances for each DSM pixel 

location, thus taking into account the disparity errors of the 

SGM algorithm and error in 3-d location based on disparity.    

Typically, 100s of pairs are combined to form the final DSM 

surface but as few as three pointsets are sufficient to compute 

horizontal and vertical variances, albeit with low accuracy. 

Accounting for the probabilities associated with 3D pointsets 

from each pair sets this approach apart from a simple 

unweighted statistical error estimation based upon the scatter 

of the 3-d points. 

  The approach just described provides for local and global 
error prediction and presents a unified approach based on the 

geometric uncertainty of rays cast from each sensor pixel into 

3-d space. The formulation in terms of rays is agnostic to the 

type of sensor and so the analysis can apply to a wide range of 

overhead imaging systems including complex wide area 

motion image (WAMI) scanners and single perspective focal 

plane cameras as well as a heterogeneous constellation of 

satellite imaging systems, which is the focus of this paper. 

III. THE RAY MODEL FOR SATELLITE IMAGES 

A. Geometric Rays 

 
Fig. 5  The formation of a satellite image. a) The image is built up line-by-

line. b) The collection of ray cast from image pixels as seen at the 

corresponding ground points. 

  The formation of a satellite image is shown in Fig. 5a). The 

satellite collects the sequence of image lines through a 

combination of orbital and satellite scanning motion, moving 

from one line to the next. Note that sensor motion is 

perpendicular to projection of image lines on the Earth surface 

and each line is captured by an array of detectors on the focal 

plane. The projection from ground space to image space is 

determined from the position and attitude of the spacecraft for 

each line of the image, as well as the optical system geometry. 

Any error in the determination of satellite pose will result in 

an error in the geographic location of the camera rays and thus 

in the location of the reconstructed geometry from multiple 

satellite images. Given a satellite orbit 500Km above the 

Earth’s surface, small attitude errors manifest themselves as 

translations of the image with respect to the actual ground 

location. Correction of these pointing errors during geo-

registration can be achieved by a 2-d translation of the image.  

  As shown in Fig. 5b), a typical commercial satellite image 

spans a region that is 10s of kilometers in extent. An example 

set of rays is shown in the figure where the ray directions are 

locally nearly parallel but gradually change direction as the 

satellite moves along its orbit. The ray geometry, origin and 

direction, can be derived directly from the third order rational 

polynomial coefficient (RPC) metadata by computing the 

back-projection of a pixel location onto a pair of 3-d planes 

displaced in elevation. The resulting pair of points defines the 

ray geometry. However, iterative non-linear back-projection 

computation is costly if carried out at every pixel in the image. 

  Computation is greatly simplified for many operations if a 

linear approximation to the projection function is used. The 

linear approximation is called the affine camera [15] where the 

ray directions over a small region on the Earth surface are 

effectively the same, i.e., affine camera rays are parallel. This 

approximation is very accurate for a typical tile region of 

350 × 350 m., where the change in ray direction over the tile 

for the World View 3 satellite with an altitude of 650Km is 

less than 1 milliradian. Thus, even though the projection onto 

a line of the image sensor is a perspective projection, the 

projection center is effectively at infinity, as in the affine case.  

In areas of high relief, tile size is reduced to limit the elevation 

change within the tile due to memory limitations of the SGM 

algorithm. Analysis in [16] showed accuracy degradation of 

up to 0.3 meters at checkpoints for IKONOS stereo extraction 

in areas spanning 11 x 11 km; i.e., about 30 times larger in 

both length and width of the tiles used in this study. 

B. The affine camera 

 
Fig. 6 The ray 𝒓 defined by the image location (u, v) for an affine camera. 𝒓̂ is 

the unit ray direction vector and 𝒑 is an arbitrary point on the ray.  𝑨𝟎 and 𝑨𝟏 

are 3-d row vectors from the upper 𝟐 × 𝟑 sub-matrix of the affine camera 

matrix. The ray direction is defined by 𝑨𝟎 × 𝑨𝟏. 

The RPC metadata can be used to construct the affine camera 

parameters for a given tile by randomly generating a set of 3-d 

to 2-d correspondences using the forward projection of the RPC 

model. The affine camera parameters are then estimated from 

the correspondence set using a linear regression algorithm. 

The affine camera projection is defined by a 3 × 4 matrix,  

 

𝐶𝑎𝑓𝑓 = [

𝑎00 𝑎01 𝑎02 𝑎03

𝑎10 𝑎11 𝑎12 𝑎13

0 0 0 1
]

= [
𝐴0 𝑎03

𝐴1 𝑎13

0 1
] 

(6) 



, so that  

[
𝑢
𝑣
1
] = [

𝐴0 𝑎03

𝐴1 𝑎13

0 1
] [

𝑋
𝑌
𝑍
1

] or,  (7) 

[
𝑢
𝑣
] = [

𝐴0

𝐴1
] [

𝑋
𝑌
𝑍
] + [

𝑎03

𝑎13
] (8) 

  As shown in Fig. 6, the ray direction 𝑟̂ is given by the cross 

product of 𝐴0 and 𝐴1 treated as vectors. The direction 𝑟̂ is the 

same for any pixel in the image region for which the affine 

camera is valid.  The definition of the ray is completed by 

specification of any point 𝑝 along the ray as shown in Fig. 6. 

Given an image location (𝑢, 𝑣), the point is given by 

 𝑝 = 𝛽0𝐴0 + 𝛽1𝐴1, where  

[
𝛽0

𝛽1
] = [

𝐴0 ∙ 𝐴0 𝐴0 ∙ 𝐴1

𝐴0 ∙ 𝐴1 𝐴1 ∙ 𝐴1
]
−1

[
𝑢 − 𝑎03

𝑣 − 𝑎13
] (9) 

  These matrix operations can be carried out with high 

computational efficiency within a tile, e.g., the matrix inverse 

in Eq. (9) is the same for every pixel (𝑢, 𝑣) in the image 

region over the tile and so only needs to be computed once.   

  The affine camera model enables non-iterative low-cost 

linear algorithms for operations such as: 3-d point 

triangulation over stereo pairs, correspondence filtering using 

the epipolar constraint and covariance-weighted least squares 

estimation of global geo-position of the DSM.  It is noted that 

with respect to global position estimation, the adjustment of 

image projection by translation in image coordinates is 

accurate over each of the sites’ ground footprints due to the 

high relative accuracy achieved by commercial satellite 

ground processing.  For example, an adjustment of image 

offset typically achieves projection accuracy of less than one 

pixel over the extent of a typical World View image of 

40 × 100  kilometers. Larger extents, such as mapping strips, 

may require a full affine transformation of image coordinates, 

which is still a linear operation. 

IV. SATELLITE POSE COVARIANCE 

A. Satellite coordinate systems 

 

Before identifying the coordinate systems and transformations 

used to set up the error covariance model, we first note the 

following metadata that typically accompanies the satellite 

imagery: 

• rational polynomial coefficient (RPC) model for 

projecting ground points to image points 

• the origin point, 𝑅𝑜  on the Earth surface in WGS84 

coordinates,(𝜆𝑜 , 𝜙𝑜 , ℎ𝑜), where ℎ𝑜 is some nominal height 

above the WGS84 Ellipsoid. 

• satellite azimuth 𝑎𝑧 and elevation 𝑒𝐸 during image 

collection 

• altitude of the satellite orbit, 𝐻𝑠 

• inclination angle 𝜃 of the orbit with respect to the equator 

  There are several coordinate systems involved in computing 

the pose covariance matrix and its effect on the intersection of 

sensor rays in the formation of multi-image geometry, as 

shown in Fig. 7.  The relationship between the satellite sensor 

and a local coordinate system on the ground is shown in a). A 

tangent plane to the Earth’s surface is defined at an origin 

point, 𝑅𝑜 , shown in the figure. An East-North-up (enu) 

coordinate system is constructed at 𝑅𝑜 . The North (𝑁𝑜) and up 

( 𝑢𝑝𝑜) axes are shown in the figure. The orientation of the 

satellite with respect to the enu coordinate system is defined 

by the azimuth (𝑎𝑧) and elevation angles (𝑒𝐸) shown in the 

figure. A unit vector 𝑢̂𝑠 is computed from the azimuth and 

elevation angles and is expressed in the Earth-centered, Earth-

fixed (ecf) coordinate system. The position of the satellite 𝑅𝑠  

in the Earth-centered, Earth-fixed (ecf) coordinate system is 

computed by intersecting a vector of unknown length starting 

at 𝑅𝑜  and pointing along 𝑢̂𝑠 with a geocentric sphere whose 

radius is the sum of the known height of the orbit 𝐻𝑠 and the 

nominal radius of the Earth 𝑅𝑒. 

Fig. 7 The Earth Centered Earth Fixed (ecf) coordinate system provides a common bridge between other coordinate systems involved in satellite imaging. 

The local Cartesian system for the area of interest is in the East North Up coordinate frame, where North and East lie in the ellipsoid tangent plane at 𝑅𝑜and 

𝑢𝑝𝑜 is perpendicular to the ellipsoid at 𝑅𝑜 . b) The in track, cross track and radial (ICR) coordinate system defines the position and velocity vector of the 

satellite’s orbital motion. c) The sensor coordinate system, 𝑈, 𝑉,𝑊 is defined by the orientation of the satellite during image acquisition. This coordinate 

system differs from the ICR system since the satellite can rotate independently of orbital motion. 



  Fig. 7b) shows the in-track, cross-track, radial (icr) 

coordinate system. The radial vector corresponds to the 

geocentric radius vector of the satellite (𝑅𝑠) and is not aligned 

with the 𝑢̂𝑠 vector except for the special case of nadir imaging. 

The tangent vector to the orbit (in-track) is computed from the 

known inclination angle, 𝜃, of the satellite which corresponds 

to the ground track angle at the equator; the current algorithm 

does correct for the change in the ground track angle as 

latitudes increase in magnitude towards the poles. The cross-

track coordinate vector is defined by the cross product of the 

radial and in-track vectors. 

    Fig. 7c) defines the sensor coordinate system. A satellite 

can change its orientation during image collection to point off-

nadir and so the sensor coordinate system is generally not 

aligned with the icr coordinate system. The sensor coordinates 

𝑈, 𝑉,𝑊 are defined such that 𝑊 is aligned with the view 

direction of the optical system and pointing away from the 

Earth. The 𝑉 axis is perpendicular to 𝑊 and parallel to the 

scan direction of the image. The unit vector 𝑈 is defined as the 

cross-product of 𝑉 and 𝑊, which completes the sensor 

coordinate system. The angles 𝜔,𝜙, 𝜅 represent variations 

with respect to the measured attitude of the satellite and are a 

key source of pointing inaccuracy. 

B. Pose covariance 

  A physical basis for pose uncertainty is now defined with 

respect to errors in satellite position and orientation (pose),  

so-called adjustable parameters. The error in satellite pose is 

defined as, 

𝑑℘ =

[
 
 
 
 
 
𝑑𝐼
𝑑𝐶
𝑑𝑅
𝜔𝑠

𝜙𝑠

𝜅𝑠 ]
 
 
 
 
 

 , (14) 

 

where (𝑑𝐼, 𝑑𝐶, 𝑑𝑅) are the in-track, cross-track and radial 

errors in satellite position and (𝜔𝑠 , 𝜙𝑠 , 𝜅𝑠) are small angle 

errors in satellite sensor attitude as shown in   Fig. 7c). The 

position error vector can be transformed into the sensor 

coordinate frame according to, 

[
𝑑𝑈
𝑑𝑉
𝑑𝑊

] = 𝑇𝑒𝑐𝑓→𝑠𝑒𝑛𝑠𝑜𝑟𝑇𝑖𝑐𝑟→𝑒𝑐𝑓 [
𝑑𝐼
𝑑𝐶
𝑑𝑅

], (15) 

where 𝑇𝑒𝑐𝑓→𝑠𝑒𝑛𝑠𝑜𝑟 is the rotation from ecf coordinates to the 

sensor coordinate system (𝑠𝑋, 𝑠𝑌, 𝑠𝑍), and 𝑇𝑖𝑐𝑟→𝑒𝑐𝑓  is the 

rotation from the satellite in-track, cross-track and radial 

coordinate system to ecf coordinates. See   Fig. 7c). This 

transformation is incorporated later in the Jacobian that maps 

the pose errors into errors in image ray displacements.  

  The pose covariance matrix, denoted as 𝒮℘ , is a 6𝑛 × 6𝑛 

matrix, where 𝑛 is the number of images. For a single image 

and for the WorldView3 satellite, the covariance matrix is, 

𝒮℘ =

[
 
 
 
 
 
0.5𝑚2

0.5𝑚2

0.5𝑚2

8 × 10−12𝑟𝑎𝑑2

8 × 10−12𝑟𝑎𝑑2

16 × 10−12𝑟𝑎𝑑2]
 
 
 
 
 

 

As an illustration, for a nadir image the corresponding 

variance in ground position is, 

𝜎𝑋𝑋 = 6200002 × 8 × 10−12 + 0.5 = 3.6𝑚2 

where the orbital altitude is 620 km. 

  The pose covariance matrix does not explicitly contain terms 

to model jitter, which is applicable to sensor attitude, but not 

position due to the stable orbit.  The magnitude of the jitter 

component of attitude error is at least an order of magnitude 

smaller than that of the global pointing error, as demonstrated 

by the bundle adjustment residuals, typically less than 0.5 

pixel in magnitude, and therefore already accommodated by 

the assigned variance.   

  It is also possible for sensor pose errors of two or more 

images to be correlated. The correlation is due to the 

persistence of error states for short periods of time along the 

same orbital pass. Sensor position and attitude errors for 

nearby images are highly correlated; e.g., a correlation 

coefficient on the order of 𝜌 = 0.8. Pose errors are typically 

modeled as completely uncorrelated between images acquired 

from separate orbital passes even if acquired from the same 

sensor.   

 
Fig. 8 The intersection of two rays. The ray direction unit vectors are  𝒓̂𝟎 and 

𝒓̂𝟏 with origin points, 𝒑𝟎 and 𝒑𝟏, and covariance matrices 𝓢𝜺
𝟎 and 𝓢𝜺

𝟏 

respectively. 

V. PROPAGATING SATELLITE POSE COVARIANCE 

A. Ray covariance 

The intersection of two sensor rays is illustrated in Fig. 8 

The sensor ray is shown as a semitransparent cylinder 

indicating that only displacements of a ray orthogonal to the 

ray affect the intersection point 𝑋 = 𝑋0 + 𝜕𝑋. The ray 

displacements are due to pose errors during image collection. 

The covariance of ray origin  𝑝𝑖  is defined with respect to the 

unit vectors, 𝑢̂𝑖 and 𝑣̂𝑖 , which are the unit sensor coordinate 

vectors 𝑠𝑋̂ and 𝑠𝑌̂ transformed into the local enu Cartesian 

coordinate frame, denoted as (𝑥̂, 𝑦̂, 𝑧̂) in Fig. 8. 𝑢̂𝑖 and 𝑣̂𝑖  are 

orthogonal to each other and to the ray direction, 𝑟̂𝑖. The 

perturbed ray origin is given by, 𝑝̃𝑖 = 𝑝𝑖 + 𝜀𝑢
𝑖 𝑢̂𝑖 + 𝜀𝑣

𝑖 𝑣̂𝑖, where 

(𝜀𝑢
𝑖 , 𝜀𝑣

𝑖 ) are random variables representing the ray 

displacement errors due to errors in sensor pose. For 𝑛 images 

the collective error vector is denoted as, 



ℰ𝑠 =

[
 
 
 
 
 
 
 

𝜀𝑢
0

𝜀𝑣
0

𝜀𝑢
1

𝜀𝑣
1

⋮
𝜀𝑢
𝑛−1

𝜀𝑣
𝑛−1]

 
 
 
 
 
 
 

 (16) 

and the ray covariance matrix 𝒮𝜀𝑠
= 〈ℰ𝑠ℰ𝑠

𝑇〉.  

 

In order to relate the satellite pose error covariance to the ray 

covariance it is necessary to construct a Jacobian derivative 

matrix. For a single sensor the orthogonal ray displacements 

are,  

[
𝜀𝑢

𝜀𝑣
] = [

(𝑑𝑈(𝑑𝐼, 𝑑𝐶, 𝑑𝑅) + |𝑅|𝜙𝑠)

(𝑑𝑉(𝑑𝐼, 𝑑𝐶, 𝑑𝑅) − |𝑅|𝜔𝑠)
] (17) 

. 

Note that displacements along the ray and rotations about the 

ray, 𝜅𝑠 do not affect the intersection point, 𝑋. The elements 

involving 𝜅𝑠 of the pose covariance matrix, 𝒮℘, can be 

dropped giving a 5𝑛 × 5𝑛 matrix. The full 2𝑛 × 5𝑛 Jacobian 

matrix is, 

𝐽 =
𝜕𝜀𝑠

𝜕℘
= (18) 

[
 
 
 
 
 
𝑑𝑈𝐼

0 𝑑𝑈𝐶
0 𝑑𝑈𝑅

0 0 |𝑅0| ⋯ 0 0 0 0 0

𝑑𝑉𝐼
0 𝑑𝑉𝐶

0 𝑑𝑉𝑅
0 −|𝑅0| 0 ⋯ 0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝑑𝑈𝐼

𝑛−1 𝑑𝑈𝐶
𝑛−1 𝑑𝑈𝑅

𝑛−1 0 |𝑅𝑛−1|

0 0 0 0 0 ⋯ 𝑑𝑉𝐼
𝑛−1 𝑑𝑉𝐶

𝑛−1 𝑑𝑉𝑅
𝑛−1 −|𝑅𝑛−1| 0 ]

 
 
 
 
 

 

 

The 2𝑛 × 2𝑛 ray covariance matrix is then 𝒮𝜀𝑠
= 𝐽 𝒮℘ 𝐽

𝑇. Note 

that 𝐽 is block diagonal, i.e.,  
𝜕𝜀𝑠

𝑖

𝜕℘𝑗 = 0 , 𝑖 ≠ 𝑗. 

B. Ray intersection point covariance 

  The ray intersection algorithm is based on a well-known linear 

algorithm where the solution minimizes the sum of squared 

distances from each ray to the intersection point [17]. A 

projection matrix  𝑃𝑟𝑖 = (𝐼 − 𝑟̂𝑖(𝑟̂𝑖)𝑇  ) is defined that produces 

the component of a vector that is orthogonal to ray 𝑟̂𝑖.  That is, 

𝑑⊥
𝑖 (𝑋) = 𝑃𝑟𝑖(𝑝𝑖 − 𝑋), where 𝑑⊥

𝑖 (𝑋) is the vector component of 

(𝑝𝑖 − 𝑋) orthogonal to ray 𝑟̂𝑖.  The linear algorithm minimizes 

the sum of squared perpendicular distances,  𝐷(𝑋) =

(𝛿⊥(𝑋))
𝑇
𝛿⊥(𝑋) where, 

𝛿⊥(𝑋) =

[
 
 
 

𝑑⊥
0(𝑋)

𝑑⊥
1 (𝑋)
⋮

𝑑⊥
𝑛−1(𝑋)]

 
 
 
 (19)) 

 

The solution is found by setting the derivative of 𝐷(𝑋) to zero. 
𝜕𝐷(𝑋)

𝜕𝑋
= −2∑𝑃𝑟𝑖(𝑝𝑖 − 𝑋)

𝑖

= 0 

𝐴 = ∑ 𝑃𝑟𝑖

𝑖

, 𝐴𝑋 = ∑𝑃𝑟𝑖𝑝𝑖

𝑖

,   𝑋 = 𝐴−1 ∑𝑃𝑟𝑖𝑝𝑖

𝑖

 (20) 

The solution in Eq. (20) can be seen as one that assigns the 

average orthogonal components of 𝑋 to the average orthogonal 

components of the ray origins. 

  The algorithm can be extended to take into account the error 

covariance of satellite pose by extracting the 2-d scalar 

components of the ray displacements in the coordinate system of 

the plane orthogonal to the ray. Define a 2 × 3 projection matrix 

  𝜋⊥
𝑖 = [

(𝑢̂𝑖)𝑇

(𝑣̂𝑖)𝑇] that maps a 3-d vector into the corresponding 2-d 

plane coordinates. The 2-d vector 𝑑⊥
𝑖 (𝑋) = 𝜋⊥

𝑖 (𝑝𝑖 − 𝑋) lies in 

the orthogonal plane as shown in Fig. 9. 

 
Fig. 9 The projection of a 3-d vector into 2-d coordinates of the plane 
orthogonal to ray r ̂. 

As mentioned above, errors in satellite pose only affect the ray 

origin so 
𝜕𝑑⊥

𝑖 (𝑋)

𝜕𝜀𝑢
𝑖 ,𝜀𝑣

𝑖 = [
1 0
0 1

]. Let the 2𝑛 × 3 matrix, Π , be 

defined as, 

Π =

[
 
 
 

𝜋⊥
0

𝜋⊥
1

⋮
𝜋⊥

𝑛−1]
 
 
 
 (21)) 

Let the 3𝑛 × 1 matrix, ℛ, represent the set of vectors from the 

intersection point, 𝑋, to the ray origins, 𝑝𝑖. 
 

ℛ(𝑋) =

[
 
 
 

(𝑝0 − 𝑋)

(𝑝1 − 𝑋)
⋮

(𝑝𝑛−1 − 𝑋)]
 
 
 
 (22)) 

The projection operation Π ⊩ ℛ(𝑋) produces a 2𝑛 × 1 matrix 

and denotes the simultaneous projection of each 3-d vector 

element of  ℛ(𝑋), (𝑝𝑖 − 𝑋) , by the corresponding 𝜋⊥
𝑖  

projection matrix. A weighted least squares solution can now 

be formulated where the scalar quantity to be minimized is, 

𝐷̃(𝑋) = (Π ⊩ ℛ(𝑋))
𝑇
( 𝒮𝜀)

−1Π ⊩ ℛ(𝑋) = 

                             ℛ𝑇(𝑋) ⊩ Π𝑇( 𝒮𝜀)
−1Π ⊩ ℛ(𝑋). 

(23)) 

The evidence from each 2-d orthogonal displacement is 

weighted by the inverse ray covariance matrix so that more 

accurate ray positions play a greater role in the determination of 

the intersection point.  The solution for the intersection point 

proceeds as follows. 

 𝜕𝐷̃(𝑋)

𝜕𝑋
= −2Π𝑇(𝒮𝜀𝑠

)
−1

Π ⊩ ℛ(𝑋) = 0 (24)) 

Define the vector of ray origins as ℙ, a 3𝑛 × 1 matrix,  

ℙ =

[
 
 
 

𝑝0

𝑝1

⋮
𝑝𝑛−1]

 
 
 
 (25)) 



and 𝕏 as a 3𝑛 × 1 matrix of copies of the unknown 

intersection point, 

𝕏 = [

𝑋
𝑋
⋮
𝑋

] = [

𝐼3×3

𝐼3×3

⋮
𝐼3×3

]𝑋 (26)) 

With these definitions, the derivative of the weighted total 

squared error is 

𝜕𝐷̃(𝑋)

𝜕𝑋
= −2Π𝑇(𝒮𝜀𝑠

)
−1

Π (ℙ − [

𝐼3×3

𝐼3×3

⋮
𝐼3×3

] 𝑋) = 0 (27)) 

Let 𝒜̃ = Π𝑇(𝒮𝜀𝑠
)
−1

Π, and it follows that, 

 (28) 

𝑋 = 𝒜−1

(

 
 
 
 
 

[[𝑢̂0 𝑣0] [𝑢̂1 𝑣1] ⋯ [𝑢̂𝑛−1 𝑣𝑛−1]](𝒮𝜀𝑠
)
−1

[
 
 
 
 
 
 
 [

(𝑢̂0)𝑇

(𝑣0)𝑇
]

[
(𝑢̂1)𝑇

(𝑣1)𝑇]

⋮

[
(𝑢̂𝑛−1)𝑇

(𝑣𝑛−1)𝑇
]
]
 
 
 
 
 
 
 

⊩

[
 
 
 

𝑝0

𝑝1

⋮
𝑝𝑛−1]

 
 
 

)

 
 
 
 
 

 

  It can be shown that the covariance of the 3-d intersection 

point coordinates is 𝒜̃−1 = 𝑃 (see Eq. 3), and is the same as 

the Multi-Image Geo-positioning (MIG) solution but in this 

case is a natural byproduct of the ray intersection solution. Eq. 

(28) is the key result where the computation of the multi-ray 

intersection point and error propagation of satellite pose 

covariance occurs at the same time. 

  To illustrate the benefit of the covariance-weighted solution 

an example set of 17 WorldView3 images was selected. The 

image set is composed of three orbital passes and the pose 

covariance matrix contains correlations between satellite 

attitude errors within each pass. The spread of view directions 

for the orbital passes is shown in Fig. 16. The resulting 

85 × 85 covariance matrix defines a multi-normal distribution 

for satellite pose errors. Samples are generated from this 

distribution to produce an ensemble of perturbed ray positions. 

The 17 rays for each sample are intersected using the original 

linear algorithm without covariance weighting. The scatter of 

the resulting 3-d intersection points for 100,000 samples is 

shown in Fig. 10.  

 
Fig. 10 The scatter of 3-d intersection points due to satellite pose error. Plot 

units are meters.  

The covariance matrix of these samples 𝒮𝑠𝑎𝑚𝑝 is compared 

with the covariance matrix for 𝑋 as determined by 𝒜̃−1. The 

uncertainty ellipsoid with covariance weighting has half the 

volume of that without covariance weighting, demonstrating 

much improved accuracy.   

  The global position of the ray intersection point is therefore 

significantly more accurate than its predicted position from 

any single image. The intersection point can be used to correct 

the global bias of each image by projecting the point into the 

image and translating the image coordinate system to align the 

image location of the intersection point with the location of 

the projected 3-d point. In addition, this alignment procedure 

co-registers the images to sub-pixel relative accuracy as is 

needed for stereo reconstruction. Additional transformational 

degrees of freedom such as rotation and scale are not needed, 

as it is observed that minimum elevation errors across the span 

of the datasets do not exceed 0.2m. 

VI. LOCAL ERRORS 

A. DSM point grids 

 
Fig. 11 Disparity shifts between the target and reference images of a rectified 

stereo pair results in 3-d points constructed by intersecting rays. 

  Each stereo pair generates a disparity image found by the 

SGM algorithm. For details of the algorithm, see Hirschmüller 

[6]. The disparity values represent the difference in image 

locations for corresponding surface positions along rows of 

the epipolar-rectified left and right image. As shown in  

Fig. 11, surfaces closer to the sensor produce larger disparity 

shifts than more remote surfaces. Note that the camera rays for 

a given image are parallel in accordance with the affine 

projection model, see Eq. (8) and Fig. 6. 3-d points are found 

by intersecting the pair of rays defined by the disparity image. 

A typical stereo pair will generate more than one million 3-d 

points per tile that densely cover the observed scene surfaces. 

 
Fig. 12 Associating a stereo point cloud with the DSM pixel grid. a) The 

dense point cloud is not generally aligned with the DSM pixel grid. b) The 

elevation for each pixel cell is found by interpolating nearby values. 

B. Horizontal error 

   The point clouds for each stereo pair are fused together by 

associating the points with DSM pixel domains resulting in a 

set of elevation values for each pixel location as shown in  



Fig. 12. The stereo image pixel space and the 3-d DSM grid 

coordinate space will necessarily be different and so the dense 

point cloud generated by a stereo pair will not be aligned with 

DSM bins, as shown in Fig. 12a). A DSM pixel bin (𝑖, 𝑗) is 

associated with a set of 𝑘 neighbors 𝑁𝑖,𝑗 that lie within a 

specified radius 𝑟 of the bin center (𝑥𝑜,𝑦𝑜).   

  That is 𝑁𝑖,𝑗 = {𝑋𝑟|𝑑𝑟 ≤ 𝑟, |𝑁𝑖,𝑗| ≤ 𝑘},  

𝑑𝑟 = √(𝑥𝑟 − 𝑥𝑜)2 + (𝑦𝑟 − 𝑦𝑜)2. As mentioned in the 

introduction, each point 𝑋𝑟  is associated with a probability 

𝑃𝑟  based on the consistency in 3-d point locations between the 

forward and reverse order of the stereo pair. The elevation at a 

bin is determined by a weighted least squares algorithm where 

the weight  𝑤𝑟  of a point is, 𝑤𝑟 =
𝑃𝑟

𝑑𝑟
.  The point probabilities 

are also interpolated to assign a probability to the bin itself, 

 𝑃̅𝑞(𝑖, 𝑗) , with respect to a given stereo pair 𝑞. 

 

  In general, the points that are assigned to a bin are scattered 

randomly about the bin center. Thus, the elevation assigned to 

the bin will not correspond to the actual world surface elevation 

at the bin geographic coordinates. The elevation is more 

accurately associated with the location of the neighborhood 

centroid but with a standard deviation related to the scatter of 

the point locations within the neighborhood. The horizontal 

squared displacement at bin (𝑖, 𝑗) for stereo pair 𝑞 is given by, 

𝜎ℎ𝑞
2 (𝑖, 𝑗) =

1

∑ 𝑃𝑟(𝑖, 𝑗)𝑟
∑𝑃𝑟(𝑖, 𝑗)𝑑𝑟

2(𝑖, 𝑗)

𝑟

 (29)) 

It is necessary to combine these horizontal displacement values 

from each stereo pair to obtain the final displacement for the 

fused DSM. The fused horizontal displacement is given by, 

𝜎ℎ
2(𝑖, 𝑗)

=
1

∑ 𝑃̅𝑞(𝑖, 𝑗)𝑞
∑𝑃̅𝑞(𝑖, 𝑗)𝜎ℎ𝑞

2 (𝑖, 𝑗)

𝑞

 (30)) 

An example of the fused horizontal root mean squared 

displacement is shown in Fig. 14. As might be expected, the 

displacement increases markedly near step boundaries at 

building edges. There are also somewhat higher displacements 

on some sloped surfaces and near slope discontinuities. 

C. Vertical error 

  The fusion of multiple elevation values at each DSM pixel 

bin is achieved by forming a weighted set of elevation values 

that are consistent with each other. In this context a set 

𝐶(𝑖, 𝑗) = {𝑧𝑞(𝑖, 𝑗)|𝑎𝑏𝑠 (𝑧𝑞(𝑖, 𝑗) − 𝑧𝑙(𝑖, 𝑗)) < 𝑡𝑜𝑙} (31)) 

is consistent if all values are within a tolerance of an initial 

seed 𝑧𝑙(𝑖, 𝑗) used to start the formation of the set. The fusion 

process tries all elevation values at (𝑖, 𝑗) as seeds and selects 

the consensus set with the largest expected number of 

members 〈𝑁𝐶〉, where 〈𝑁𝐶〉 = ∑ 𝑃𝑞𝑞∈𝐶  and 𝑃𝑞 is the probability 

of 𝑧𝑞(𝑖, 𝑗). 

 
Fig. 13 An example consensus set. The mean elevation and ±1𝜎 bounds are 

shown. 

  An example of a consensus set of elevations is shown in Fig. 

13. The elevations are sorted to better illustrate the range of 

values. The elevation value for the bin is assigned the 

weighted mean of the elevations, 

𝑧̅(𝑖, 𝑗) =
1

∑ 𝑃𝑞𝑞∈𝐶
∑𝑃𝑞(𝑖, 𝑗)

𝑞∈𝐶

z(𝑖, 𝑗) (32)) 

with standard deviation, 

𝜎𝑧(𝑖, 𝑗) = √
1

∑ 𝑃𝑞𝑞∈𝐶
∑𝑃𝑞(𝑖, 𝑗)

𝑞∈𝐶

(z(𝑖, 𝑗) − 𝑧̅(𝑖, 𝑗))
2
 (33)) 

The ± 1𝜎𝑧  limits about the mean are also shown in Fig. 13.  

 

  This analysis provides a prediction of the expected local 

vertical errors at each pixel of the DSM. An example profile 

scan of a series of solar panels is shown in Fig. 19. Note that 

the DSM elevation error is within the 90% linear error bounds 

except for a few isolated points. 

VII. EXPERIMENTAL RESULTS 

A. Global Error 

a) Buenos Aires, Argentina 

  A site in Buenos Aires, Argentina, 

 (34.4894120S, 58.5859220W), is shown in Fig. 15. The 

feature correspondence track has 29 WorldView3 images as 

shown in Fig. 15a). Four of the images are collected on the 

same orbital pass as indicated by orange collinear points. All 

five of the pose components of the four images are correlated 

with 𝜌 = 0.8. The DSM must be translated by 

 𝑡𝑏𝑖𝑎𝑠 = (0.59, 0.49, 0.98) m to align with a LiDAR DSM 

covering the same region. The LiDAR DSM has 0.5m spacing 

and the DSM, Fig. 15b), has 0.3m spacing. The alignment is 

carried out by converting both to point clouds and minimizing 

the distances to the nearest points. 

  The effect of attitude correlation on four out of 29 images 

was investigated by setting 𝜌 = 0.0 and reprocessing the DSM 

with the modified geo-registration. The registration algorithm 

that aligns the DSM and LiDAR point clouds has a standard 

deviation over repeated registration trials of about 0.1m for 

translation components. Thus, no significant difference is 

observed with 𝑡𝑏𝑖𝑎𝑠,𝜌=0 = (0.485,0.547,1.012) m. Finally, the 

2𝑛 × 2𝑛 covariance matrix of the ray displacements was set to 

the identity matrix to observe the bias without considering 

view obliquity effects. Again, no significant change in bias 

was observed, 𝑡𝑏𝑖𝑎𝑠,𝑐𝑜𝑣.=𝐼 = (0.441 0.563 0.980 )m. This 

result is to be expected since the pose variances are 

approximately the same for each image only differing with 



respect to the degree of view direction obliquity. If pose 

variances are identical for each image, the common variance 

value can be factored out of the expression for squared 

perpendicular error and the result reverts to ray intersection 

without covariance weighting. 

b) Wright Patterson AFB, Dayton, OH 

 

  The WorldView3 image data for the Wright Patterson AFB 

experiment is an unusual case where most of the images are in 

disjoint subsets that are collected within seconds of each other 

on single orbits. There are three single-pass groups as 

indicated by the orange, red and green points in Fig. 16 a). 

There will be a high degree of correlation between the position 

and attitude errors of the satellite pose for each of the orbital 

passes. Accounting for these correlations significantly reduces 

the resulting horizontal (East-West) bias in the 3-d ray 

intersection point for the 19-image track.  

The 3-d covariance matrix with pose correlation coefficient 

𝜌 = 0.8 is 

𝑃 = 𝒜̃−1 = [
0.501598 0.004349 −0.02467
0.004349 0.526126 −0.02467
−0.02467 −0.02467 1.220778

]. 

  The required translation to align the DSM with LiDAR 

ground truth is  𝑡𝑏𝑖𝑎𝑠 = 1.691, −0.385, 0.540.  The resulting 

bias without considering pose covariance is 

𝑡𝑏𝑖𝑎𝑠,𝑐𝑜𝑣.=𝐼 = 2.079, −0.414, −0.153, 

which exceeds the predicted 90% bias error ellipsoid in  

Fig. 16 c), d). This experiment shows that correctly modeling 

pose correlation on single pass collection sequences decreased 

the horizontal error component of the bias, while it increased 

the vertical bias component. 

c) Richmond, Virginia 

 

Table 1 Distribution of sensor types for the Richmond dataset 

Satellite Platform Number Position Std. 

Dev. 

Attitude Std. 

Dev. 

GeoEye-1 12 0.7071 2 × 10−6 

QuickBird 3 1.0 23.203 × 10−6 

WorldView1 1 0.7071 3.742 × 10−6 

WorldView2 23 0.7071 2.83 × 10−6 

WorldView3 5 0.7071 2.83 × 10−6 

 

  There is a heterogeneous mix of satellite sensor types in this 

example. The correspondence track has 44 images with the 

population of satellite platforms shown in Table 1. The 

significant difference in error covariance among the different 

sensor platforms illustrates the benefit of applying error 

propagation in the computation of the 3-d track intersection 

point and the resulting DSM geographic bias. The original 

DSM geo-registration algorithm using non-linear bundle 

adjustment without covariance weighting had produced a bias 

of  𝑡𝑏𝑖𝑎𝑠,𝐵𝐴 = (0.180, −1.203, 1.629) compared to the 

new 𝑡𝑏𝑖𝑎𝑠,𝑐𝑜𝑣. = (  0.583, −0.696, 0.349) with covariance 

weighting and the linear least squares ray intersection 

algorithm. The effect of covariance weighting is very 

significant – the magnitude of the bias translation vector with 

covariance weighting is approximately one half that produced 

by the original bundle adjustment algorithm. 

  The significant difference in error covariance among the 

different sensor platforms emphasizes the benefit of applying 

error propagation in the computation of the 3-d track 

intersection point and the resulting DSM geographic bias.  

B. Local Error 

a) Vertical Error 

  The accuracy of vertical error prediction for a region of the 

University of California at San Diego DSM is shown in Fig. 

18. In the experiments to follow, the DSM and the LiDAR 

GEOTIFFs are converted to 3-d point clouds and the closest in 

(𝑥, 𝑦) position LiDAR point to a given DSM point is 

considered to define the ground truth elevation. The ground 

truth and DSM elevations are shown as colorized images in 

Fig. 18 a) and b). The scales indicate the range of elevations. 

The difference in elevations, (𝑧 − 𝑧̅), is shown in Fig. 18 c).  

  Note that there are areas of large negative value (blue) due to 

differences in vegetation between the DSM and the LiDAR. 

These differences are due to the relatively long time span, 

2014 – 2019, of image collections used to construct the DSM 

and the nearly instantaneous collection time of the LiDAR.  

The vegetation, as well as transient vehicles, and parking lot 

construction, varied over the five-year period but all of these 

elevation changes are fused into a single height estimate in the 

final DSM. Persistent structures are accurately represented in 

the DSM and appear as red in Fig. 18c).   

  Other than the vegetation areas, error prediction is consistent 

with the observed elevation differences except at building roof 

boundaries. Note the fine green linear edges in Fig. 18e) 

exhibiting higher normalized distances. As was noted earlier, 

these differences may often be accounted for by the horizontal 

error tolerance that permits a range of ground truth positions 

to be matched with a single DSM elevation. This point will be 

examined later in the discussion on horizontal error.   

  The accuracy of vertical error prediction for a sloped surface 

from the same region can also be conveyed by plots where the 

elevation values lying along a line of DSM samples is 

compared to LiDAR at the same sample locations. An 

example from UCSD is shown in. In this example the 

observed differences are mostly bounded by the LE90 limits 

and a large fraction of the points are well within 1𝜎 limits.  

a) Horizontal Error 

  It is difficult to measure horizontal error directly for several 

reasons: 

• the LiDAR DSM ground truth pixel spacing, 0.5m, is 

on the order of the horizontal error  

• changes in elevation where horizontal position error 

might be estimated occur only at a small fraction of 

the surface grid cells 

  Another approach is to augment vertical error bounds 

evaluation by examining the population of ground truth 

elevations within a neighborhood defined by the horizontal 

error CE90 radius. The closest ground truth elevation within 

the neighborhood to the DSM test point can be taken as the 



true value. The horizontal neighborhood radius 𝑟ℎ90 is defined 

as, 

𝑟ℎ90(𝑖, 𝑗) = 2.146 𝜎ℎ(𝑖, 𝑗) +  
1

√2
 𝑠𝐿𝑖𝐷𝐴𝑅 

, where 𝑠𝐿𝑖𝐷𝑎𝑟  is the LiDAR cell spacing (0.5m). The 

term  
1

√2
 𝑠𝐿𝑖𝐷𝐴𝑅 defines the diagonal distance to the center of a 

LiDAR pixel so that ground truth neighbors just touching the 

horizontal position uncertainty boundary are included. The 

term 2.146 accounts for the circular error 90% uncertainty due 

to normally distributed random point scatter. This tolerance is 

seen to significantly reduce vertical error near step boundaries. 

VIII. CONCLUSIONS AND FUTURE WORK 

  The error prediction results just described provide a 

comprehensive approach to characterizing the expected 

uncertainty of DSM products. It has been shown that attitude 

correlation for satellite image collections along the same 

orbital pass can have a very significant effect on the accuracy 

of DSM geo-positioning. In the Wright Patterson AFB 

experiment of Fig. 16, the geo-positioning bias in the Easterly 

direction is reduced to be within the 90% ellipsoidal bounds, 

while error prediction fails without accounting for such 

correlation. In the case of the Richmond, VA experiment, the 

application of satellite pose covariance weighting for a mix of 

satellite sensor types reduces the geo-positioning bias vector 

magnitude by one half, compared to the unweighted solution, 

while at the same time producing a predicted 90% ellipsoid 

that properly bounds the actual observed bias. 

  The approach to local elevation error prediction enables the 

specification of uncertainty at every DSM sample. These 

predictions bound the observed error with respect to registered 

LiDAR within one standard deviation at most surface 

locations except for surface step discontinuities and vegetation 

changes due to the different times of acquisitions of the 

datasets.  The errors at such boundaries are significantly 

higher than predicted by the standard deviation computed 

from DSM bin elevation consensus sets and, in some cases, do 

not lie within the LE90 bounds defined by 1.64𝜎𝑧 . These 

discrepancies are due largely to errors in the horizontal 

location of the step boundary and to the discrete spacing 

(0.5m) of the LiDAR ground truth surface points. If the 

horizontal tolerance is relaxed to include a neighborhood of 

ground truth points then the elevation errors at step boundaries 

are dramatically reduced with most surface points lying within 

the predicted bounds.   

  The predicted error is significantly higher than observed 

error for smooth surfaces such as building roofs. Future 

investigations will consider the measured DSM surface 

roughness within a neighborhood around each DSM grid cell 

in forming a tighter bound on predicted local error over 

smooth surfaces. That is, the error prediction will be 

conditioned on local surface geometry. 

  Future experiments will focus on expanding the number and 

type of sites to validate both global bias terms and local error 

contributions to predicted geolocation uncertainty.   The use of 

satellite pose covariance weighting to improve DSM 

geographic placement accuracy depends on the accuracy of 

the specified position and attitude variances. It is possible to 

estimate these variances from correspondence tracks that have 

a small absolute geographic bias relative to the satellite 

pointing error. Various points on the satellite orbit will be 

examined to determine pose error variance estimates and their 

variation with respect to satellite position and attitude. 
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Fig. 14 The horizontal error for a DSM of Richmond, VA with 0.3 m pixel 

spacing and 100 fused stereo pairs. a) A region of the DSM. b) The horizontal 

root mean squared displacement 𝜎ℎ. Red indicates a larger displacement, blue 
smaller. The white pixels are undefined due to shadows. The peak of the 

distribution of  𝜎ℎ is 0.45m, slightly larger than the grid spacing of 0.3m. 

 
Fig. 15 Global error analysis for Buenos Aires. a) The azimuth and elevation 

of the satellite view directions (standard spherical coordinates). The orange 
squares indicate a single pass. b) The DSM for the region of interest. c), d) 

Views the 90% error ellipsoid in enu coordinates (m). The yellow arrow 

indicates geographic bias in the placement of the DSM.  

 
Fig. 16 Global error analysis for Wright Patterson AFB. a) The azimuth and 

elevation of the satellite view directions (standard spherical coordinates). 

There are 19 images with three single pass groups (orange, red, green). b) The 

DSM for the region of interest, 0.3m pixel spacing. c), d) Views of the 90% 

error ellipsoid in enu coordinates (m). The yellow arrow indicates geographic 

bias in the placement of the DSM.

 
Fig. 17 Global error analysis for the Richmond site. a) The azimuth and 

elevation of the satellite view directions (standard spherical coordinates). 

There are 44 images in the single correspondence track. b) The DSM for the 

region of interest, 0.3m pixel. 

 
Fig. 18 Vertical error at UCSD. a) LiDAR ground truth (0.5m). b) DSM 

(0.3m). c)(𝑧 − 𝑧̅), where 𝑧̅ is the LiDAR ground truth elevation. d) The 

vertical error standard deviation 𝜎𝑧. e) Normalized distance, (𝑧 − 𝑧̅)/𝜎𝑧. 

 
Fig. 19 A cross section plot comparing DSM elevations with LiDAR. a) A 

view of the scan path sketched on Google Earth (Copyright Google Earth) b) 

A view of the DSM surface for the same region. c) A line plot of the DSM 

values (blue) compared to LiDAR (red). Also shown are the 90% linear error 

bounds, green, purple (±1.64𝜎). (Note that 𝜎 is a function of position and so 

the bounds contours are not just constant offsets to the DSM elevations.) 
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